进化动态优化实验室:动态环境下教学与实验的MATLAB优化平台

Mai Peng, Zeneng She, Delaram Yazdani, Danial Yazdani, Wenjian Luo, Changhe Li, Juergen Branke, Trung Thanh Nguyen, Amir H. Gandomi, Yaochu Jin, Xin Yao
{"title":"进化动态优化实验室:动态环境下教学与实验的MATLAB优化平台","authors":"Mai Peng, Zeneng She, Delaram Yazdani, Danial Yazdani, Wenjian Luo, Changhe Li, Juergen Branke, Trung Thanh Nguyen, Amir H. Gandomi, Yaochu Jin, Xin Yao","doi":"arxiv-2308.12644","DOIUrl":null,"url":null,"abstract":"Many real-world optimization problems possess dynamic characteristics.\nEvolutionary dynamic optimization algorithms (EDOAs) aim to tackle the\nchallenges associated with dynamic optimization problems. Looking at the\nexisting works, the results reported for a given EDOA can sometimes be\nconsiderably different. This issue occurs because the source codes of many\nEDOAs, which are usually very complex algorithms, have not been made publicly\navailable. Indeed, the complexity of components and mechanisms used in many\nEDOAs makes their re-implementation error-prone. In this paper, to assist\nresearchers in performing experiments and comparing their algorithms against\nseveral EDOAs, we develop an open-source MATLAB platform for EDOAs, called\nEvolutionary Dynamic Optimization LABoratory (EDOLAB). This platform also\ncontains an education module that can be used for educational purposes. In the\neducation module, the user can observe a) a 2-dimensional problem space and how\nits morphology changes after each environmental change, b) the behaviors of\nindividuals over time, and c) how the EDOA reacts to environmental changes and\ntries to track the moving optimum. In addition to being useful for research and\neducation purposes, EDOLAB can also be used by practitioners to solve their\nreal-world problems. The current version of EDOLAB includes 25 EDOAs and three\nfully-parametric benchmark generators. The MATLAB source code for EDOLAB is\npublicly available and can be accessed from\n[https://github.com/EDOLAB-platform/EDOLAB-MATLAB].","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"27 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary Dynamic Optimization Laboratory: A MATLAB Optimization Platform for Education and Experimentation in Dynamic Environments\",\"authors\":\"Mai Peng, Zeneng She, Delaram Yazdani, Danial Yazdani, Wenjian Luo, Changhe Li, Juergen Branke, Trung Thanh Nguyen, Amir H. Gandomi, Yaochu Jin, Xin Yao\",\"doi\":\"arxiv-2308.12644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many real-world optimization problems possess dynamic characteristics.\\nEvolutionary dynamic optimization algorithms (EDOAs) aim to tackle the\\nchallenges associated with dynamic optimization problems. Looking at the\\nexisting works, the results reported for a given EDOA can sometimes be\\nconsiderably different. This issue occurs because the source codes of many\\nEDOAs, which are usually very complex algorithms, have not been made publicly\\navailable. Indeed, the complexity of components and mechanisms used in many\\nEDOAs makes their re-implementation error-prone. In this paper, to assist\\nresearchers in performing experiments and comparing their algorithms against\\nseveral EDOAs, we develop an open-source MATLAB platform for EDOAs, called\\nEvolutionary Dynamic Optimization LABoratory (EDOLAB). This platform also\\ncontains an education module that can be used for educational purposes. In the\\neducation module, the user can observe a) a 2-dimensional problem space and how\\nits morphology changes after each environmental change, b) the behaviors of\\nindividuals over time, and c) how the EDOA reacts to environmental changes and\\ntries to track the moving optimum. In addition to being useful for research and\\neducation purposes, EDOLAB can also be used by practitioners to solve their\\nreal-world problems. The current version of EDOLAB includes 25 EDOAs and three\\nfully-parametric benchmark generators. The MATLAB source code for EDOLAB is\\npublicly available and can be accessed from\\n[https://github.com/EDOLAB-platform/EDOLAB-MATLAB].\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"27 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2308.12644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2308.12644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多现实世界的优化问题都具有动态特性。进化动态优化算法(EDOAs)旨在解决与动态优化问题相关的挑战。看看现有的工作,对于给定的EDOA报告的结果有时可能会有很大的不同。出现这个问题的原因是,许多yedoa(通常是非常复杂的算法)的源代码尚未公开。实际上,许多yedoa中使用的组件和机制的复杂性使得它们的重新实现容易出错。在本文中,为了帮助研究人员进行实验并将他们的算法与几种edoa进行比较,我们开发了一个edoa的开源MATLAB平台,称为进化动态优化实验室(EDOLAB)。该平台还包含一个教育模块,可用于教育目的。在教育模块中,用户可以观察a)二维问题空间和每次环境变化后的形态变化,b)个体随时间的行为,以及c) EDOA如何对环境变化做出反应并试图跟踪移动最优。除了用于研究和教育目的之外,eolab还可以被从业者用来解决他们的现实问题。当前版本的EDOLAB包括25个edoa和三个全参数基准生成器。EDOLAB的MATLAB源代码是公开的,可以从[https://github.com/EDOLAB-platform/EDOLAB-MATLAB]访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolutionary Dynamic Optimization Laboratory: A MATLAB Optimization Platform for Education and Experimentation in Dynamic Environments
Many real-world optimization problems possess dynamic characteristics. Evolutionary dynamic optimization algorithms (EDOAs) aim to tackle the challenges associated with dynamic optimization problems. Looking at the existing works, the results reported for a given EDOA can sometimes be considerably different. This issue occurs because the source codes of many EDOAs, which are usually very complex algorithms, have not been made publicly available. Indeed, the complexity of components and mechanisms used in many EDOAs makes their re-implementation error-prone. In this paper, to assist researchers in performing experiments and comparing their algorithms against several EDOAs, we develop an open-source MATLAB platform for EDOAs, called Evolutionary Dynamic Optimization LABoratory (EDOLAB). This platform also contains an education module that can be used for educational purposes. In the education module, the user can observe a) a 2-dimensional problem space and how its morphology changes after each environmental change, b) the behaviors of individuals over time, and c) how the EDOA reacts to environmental changes and tries to track the moving optimum. In addition to being useful for research and education purposes, EDOLAB can also be used by practitioners to solve their real-world problems. The current version of EDOLAB includes 25 EDOAs and three fully-parametric benchmark generators. The MATLAB source code for EDOLAB is publicly available and can be accessed from [https://github.com/EDOLAB-platform/EDOLAB-MATLAB].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A prony method variant which surpasses the Adaptive LMS filter in the output signal's representation of input TorchDA: A Python package for performing data assimilation with deep learning forward and transformation functions HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch MPAT: Modular Petri Net Assembly Toolkit Enabling MPI communication within Numba/LLVM JIT-compiled Python code using numba-mpi v1.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1