{"title":"用马尔可夫树建模多元极值分布*","authors":"Shuang Hu, Zuoxiang Peng, Johan Segers","doi":"10.1111/sjos.12698","DOIUrl":null,"url":null,"abstract":"Multivariate extreme value distributions are a common choice for modelling multivariate extremes. In high dimensions, however, the construction of flexible and parsimonious models is challenging. We propose to combine bivariate max-stable distributions into a Markov random field with respect to a tree. Although in general not max-stable itself, this Markov tree is attracted by a multivariate max-stable distribution. The latter serves as a tree-based approximation to an unknown max-stable distribution with the given bivariate distributions as margins. Given data, we learn an appropriate tree structure by Prim's algorithm with estimated pairwise upper tail dependence coefficients as edge weights. The distributions of pairs of connected variables can be fitted in various ways. The resulting tree-structured max-stable distribution allows for inference on rare event probabilities, as illustrated on river discharge data from the upper Danube basin.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modelling multivariate extreme value distributions via Markov trees*\",\"authors\":\"Shuang Hu, Zuoxiang Peng, Johan Segers\",\"doi\":\"10.1111/sjos.12698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multivariate extreme value distributions are a common choice for modelling multivariate extremes. In high dimensions, however, the construction of flexible and parsimonious models is challenging. We propose to combine bivariate max-stable distributions into a Markov random field with respect to a tree. Although in general not max-stable itself, this Markov tree is attracted by a multivariate max-stable distribution. The latter serves as a tree-based approximation to an unknown max-stable distribution with the given bivariate distributions as margins. Given data, we learn an appropriate tree structure by Prim's algorithm with estimated pairwise upper tail dependence coefficients as edge weights. The distributions of pairs of connected variables can be fitted in various ways. The resulting tree-structured max-stable distribution allows for inference on rare event probabilities, as illustrated on river discharge data from the upper Danube basin.\",\"PeriodicalId\":49567,\"journal\":{\"name\":\"Scandinavian Journal of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/sjos.12698\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12698","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Modelling multivariate extreme value distributions via Markov trees*
Multivariate extreme value distributions are a common choice for modelling multivariate extremes. In high dimensions, however, the construction of flexible and parsimonious models is challenging. We propose to combine bivariate max-stable distributions into a Markov random field with respect to a tree. Although in general not max-stable itself, this Markov tree is attracted by a multivariate max-stable distribution. The latter serves as a tree-based approximation to an unknown max-stable distribution with the given bivariate distributions as margins. Given data, we learn an appropriate tree structure by Prim's algorithm with estimated pairwise upper tail dependence coefficients as edge weights. The distributions of pairs of connected variables can be fitted in various ways. The resulting tree-structured max-stable distribution allows for inference on rare event probabilities, as illustrated on river discharge data from the upper Danube basin.
期刊介绍:
The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia.
It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications.
The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems.
The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.