基于集成梯度推理的粒子优化和采样方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-07-10 DOI:10.1137/22m1533281
Claudia Schillings, Claudia Totzeck, Philipp Wacker
{"title":"基于集成梯度推理的粒子优化和采样方法","authors":"Claudia Schillings, Claudia Totzeck, Philipp Wacker","doi":"10.1137/22m1533281","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 11, Issue 3, Page 757-787, September 2023. <br/> Abstract. We propose an approach based on function evaluations and Bayesian inference to extract higher-order differential information of objective functions from a given ensemble of particles. Pointwise evaluation of some potential V in an ensemble contains implicit information about first- or higher-order derivatives, which can be made explicit with little computational effort (ensemble-based gradient inference). We suggest using this information for the improvement of established ensemble-based numerical methods for optimization and sampling such as consensus-based optimization and Langevin-based samplers. Numerical studies indicate that the augmented algorithms are often superior to their gradient-free variants; in particular, the augmented methods help the ensembles to escape their initial domain, to explore multimodal, non-Gaussian settings, and to speed up the collapse at the end of optimization dynamics. The code for the numerical examples in this manuscript can be found in the paper’s Github repository.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ensemble-Based Gradient Inference for Particle Methods in Optimization and Sampling\",\"authors\":\"Claudia Schillings, Claudia Totzeck, Philipp Wacker\",\"doi\":\"10.1137/22m1533281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM/ASA Journal on Uncertainty Quantification, Volume 11, Issue 3, Page 757-787, September 2023. <br/> Abstract. We propose an approach based on function evaluations and Bayesian inference to extract higher-order differential information of objective functions from a given ensemble of particles. Pointwise evaluation of some potential V in an ensemble contains implicit information about first- or higher-order derivatives, which can be made explicit with little computational effort (ensemble-based gradient inference). We suggest using this information for the improvement of established ensemble-based numerical methods for optimization and sampling such as consensus-based optimization and Langevin-based samplers. Numerical studies indicate that the augmented algorithms are often superior to their gradient-free variants; in particular, the augmented methods help the ensembles to escape their initial domain, to explore multimodal, non-Gaussian settings, and to speed up the collapse at the end of optimization dynamics. The code for the numerical examples in this manuscript can be found in the paper’s Github repository.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1533281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/22m1533281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM/ASA不确定度量化杂志,第11卷,第3期,757-787页,2023年9月。摘要。提出了一种基于函数求值和贝叶斯推理的方法,从给定粒子系综中提取目标函数的高阶微分信息。集成中某些势V的点态计算包含有关一阶或高阶导数的隐式信息,这些信息可以通过很少的计算量(基于集成的梯度推理)显式地得到。我们建议使用这些信息来改进现有的基于集合的优化和采样数值方法,如基于共识的优化和基于朗万的采样。数值研究表明,增广算法往往优于无梯度算法;特别是,增广方法帮助集成系统脱离其初始域,探索多模态,非高斯设置,并加速优化动力学结束时的崩溃。本文中数值示例的代码可以在论文的Github存储库中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ensemble-Based Gradient Inference for Particle Methods in Optimization and Sampling
SIAM/ASA Journal on Uncertainty Quantification, Volume 11, Issue 3, Page 757-787, September 2023.
Abstract. We propose an approach based on function evaluations and Bayesian inference to extract higher-order differential information of objective functions from a given ensemble of particles. Pointwise evaluation of some potential V in an ensemble contains implicit information about first- or higher-order derivatives, which can be made explicit with little computational effort (ensemble-based gradient inference). We suggest using this information for the improvement of established ensemble-based numerical methods for optimization and sampling such as consensus-based optimization and Langevin-based samplers. Numerical studies indicate that the augmented algorithms are often superior to their gradient-free variants; in particular, the augmented methods help the ensembles to escape their initial domain, to explore multimodal, non-Gaussian settings, and to speed up the collapse at the end of optimization dynamics. The code for the numerical examples in this manuscript can be found in the paper’s Github repository.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1