{"title":"丝瓜辅助羟基磷灰石三维支架的制备","authors":"Bijayinee Mohapatra, Tapash R Rautray","doi":"20.00011","DOIUrl":null,"url":null,"abstract":"The incidence of bone-related disorders is abruptly increasing worldwide, and the current therapies available are not sufficient to fulfill the growing demands of patients. Porous three-dimensional (3D) structures cast in combination with ceramics and polymers, with an intention to mimic native bone tissues, are gaining importance because of their better physicochemical and biological activities. The purpose of this study is to prepare a porous scaffold using <i>Luffa cylindrica</i> (LC) as a template coated with hydroxyapatite and gelatin. Guar gum (GG) was used as a binder, and hydroxyapatite powder was added to slurry of 10% gelatin and 1% GG in which pieces of LC were dipped followed by sintering at 900°C. The fabricated scaffolds (LC-GG) were analyzed by using different characterization techniques along with evaluation of porosity and water retention ability. The results revealed that the as-formed scaffolds have 70% porosity with more than 90% water retention ability. The degree of spreading of lymphocytes over the scaffold surface was less in comparison with that of the control, which showed the immunocompatibility of the fabricated scaffold. Based on the aforementioned findings, it is assumed that the synthesized porous structures can suitably be used for biomedical applications.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile fabrication of Luffa cylindrica-assisted 3D hydroxyapatite scaffolds\",\"authors\":\"Bijayinee Mohapatra, Tapash R Rautray\",\"doi\":\"20.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The incidence of bone-related disorders is abruptly increasing worldwide, and the current therapies available are not sufficient to fulfill the growing demands of patients. Porous three-dimensional (3D) structures cast in combination with ceramics and polymers, with an intention to mimic native bone tissues, are gaining importance because of their better physicochemical and biological activities. The purpose of this study is to prepare a porous scaffold using <i>Luffa cylindrica</i> (LC) as a template coated with hydroxyapatite and gelatin. Guar gum (GG) was used as a binder, and hydroxyapatite powder was added to slurry of 10% gelatin and 1% GG in which pieces of LC were dipped followed by sintering at 900°C. The fabricated scaffolds (LC-GG) were analyzed by using different characterization techniques along with evaluation of porosity and water retention ability. The results revealed that the as-formed scaffolds have 70% porosity with more than 90% water retention ability. The degree of spreading of lymphocytes over the scaffold surface was less in comparison with that of the control, which showed the immunocompatibility of the fabricated scaffold. Based on the aforementioned findings, it is assumed that the synthesized porous structures can suitably be used for biomedical applications.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/20.00011\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/20.00011","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Facile fabrication of Luffa cylindrica-assisted 3D hydroxyapatite scaffolds
The incidence of bone-related disorders is abruptly increasing worldwide, and the current therapies available are not sufficient to fulfill the growing demands of patients. Porous three-dimensional (3D) structures cast in combination with ceramics and polymers, with an intention to mimic native bone tissues, are gaining importance because of their better physicochemical and biological activities. The purpose of this study is to prepare a porous scaffold using Luffa cylindrica (LC) as a template coated with hydroxyapatite and gelatin. Guar gum (GG) was used as a binder, and hydroxyapatite powder was added to slurry of 10% gelatin and 1% GG in which pieces of LC were dipped followed by sintering at 900°C. The fabricated scaffolds (LC-GG) were analyzed by using different characterization techniques along with evaluation of porosity and water retention ability. The results revealed that the as-formed scaffolds have 70% porosity with more than 90% water retention ability. The degree of spreading of lymphocytes over the scaffold surface was less in comparison with that of the control, which showed the immunocompatibility of the fabricated scaffold. Based on the aforementioned findings, it is assumed that the synthesized porous structures can suitably be used for biomedical applications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.