{"title":"单实体电化学法研究纳米钯对氨硼烷氧化的电催化活性","authors":"Seungyoung Park, Ki Jun Kim, Seong Jung Kwon","doi":"10.1002/bkcs.12797","DOIUrl":null,"url":null,"abstract":"<p>Ammonia borane (AB) has garnered significant attention as a high-efficiency energy source, prompting extensive investigations into its electrochemical oxidation. One prominent avenue of research focuses on the development of electrocatalysts to enhance the oxidation of AB. Employing the novel approach of single-entity electrochemistry (SEE), the electrocatalytic properties of gold (Au), silver (Ag), and palladium (Pd) nanoparticles (NPs) for AB oxidation were explored. In the case of Au and Ag NPs, SEE experiments yielded no discernible current signal, in contrast to the electrocatalytic currents observed with bulk electrodes. However, when Pd NPs were utilized, characteristic staircase signals in the SEE measurements were observed. The variation of the SEE current signal for Pd NPs under different applied potentials, AB concentrations, and NP concentrations was further investigated. An analysis of the SEE signal elucidated the conditions under which Pd NPs can effectively catalyze AB oxidation at the single NP level.</p>","PeriodicalId":54252,"journal":{"name":"Bulletin of the Korean Chemical Society","volume":"45 1","pages":"81-88"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of electrocatalytic activity of palladium nanoparticle for ammonia borane oxidation via single-entity electrochemistry\",\"authors\":\"Seungyoung Park, Ki Jun Kim, Seong Jung Kwon\",\"doi\":\"10.1002/bkcs.12797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ammonia borane (AB) has garnered significant attention as a high-efficiency energy source, prompting extensive investigations into its electrochemical oxidation. One prominent avenue of research focuses on the development of electrocatalysts to enhance the oxidation of AB. Employing the novel approach of single-entity electrochemistry (SEE), the electrocatalytic properties of gold (Au), silver (Ag), and palladium (Pd) nanoparticles (NPs) for AB oxidation were explored. In the case of Au and Ag NPs, SEE experiments yielded no discernible current signal, in contrast to the electrocatalytic currents observed with bulk electrodes. However, when Pd NPs were utilized, characteristic staircase signals in the SEE measurements were observed. The variation of the SEE current signal for Pd NPs under different applied potentials, AB concentrations, and NP concentrations was further investigated. An analysis of the SEE signal elucidated the conditions under which Pd NPs can effectively catalyze AB oxidation at the single NP level.</p>\",\"PeriodicalId\":54252,\"journal\":{\"name\":\"Bulletin of the Korean Chemical Society\",\"volume\":\"45 1\",\"pages\":\"81-88\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Korean Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bkcs.12797\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bkcs.12797","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of electrocatalytic activity of palladium nanoparticle for ammonia borane oxidation via single-entity electrochemistry
Ammonia borane (AB) has garnered significant attention as a high-efficiency energy source, prompting extensive investigations into its electrochemical oxidation. One prominent avenue of research focuses on the development of electrocatalysts to enhance the oxidation of AB. Employing the novel approach of single-entity electrochemistry (SEE), the electrocatalytic properties of gold (Au), silver (Ag), and palladium (Pd) nanoparticles (NPs) for AB oxidation were explored. In the case of Au and Ag NPs, SEE experiments yielded no discernible current signal, in contrast to the electrocatalytic currents observed with bulk electrodes. However, when Pd NPs were utilized, characteristic staircase signals in the SEE measurements were observed. The variation of the SEE current signal for Pd NPs under different applied potentials, AB concentrations, and NP concentrations was further investigated. An analysis of the SEE signal elucidated the conditions under which Pd NPs can effectively catalyze AB oxidation at the single NP level.
期刊介绍:
The Bulletin of the Korean Chemical Society is an official research journal of the Korean Chemical Society. It was founded in 1980 and reaches out to the chemical community worldwide. It is strictly peer-reviewed and welcomes Accounts, Communications, Articles, and Notes written in English. The scope of the journal covers all major areas of chemistry: analytical chemistry, electrochemistry, industrial chemistry, inorganic chemistry, life-science chemistry, macromolecular chemistry, organic synthesis, non-synthetic organic chemistry, physical chemistry, and materials chemistry.