RGB-D相机采摘机器人的水果识别方法

IF 1.5 Q3 INSTRUMENTS & INSTRUMENTATION ROBOMECH Journal Pub Date : 2022-05-28 DOI:10.1186/s40648-022-00230-y
Yoshida, Takeshi, Kawahara, Takuya, Fukao, Takanori
{"title":"RGB-D相机采摘机器人的水果识别方法","authors":"Yoshida, Takeshi, Kawahara, Takuya, Fukao, Takanori","doi":"10.1186/s40648-022-00230-y","DOIUrl":null,"url":null,"abstract":"In this study, we present a recognition method for a fruit-harvesting robot to automate the harvesting of pears and apples on joint V-shaped trellis. It is necessary to recognize the three-dimensional position of the harvesting target for harvesting by the fruit-harvesting robot to insert its end-effector. However, the RGB-D (red, green, blue and depth) camera on the harvesting robot has a problem in that the point cloud obtained in outdoor environments can be inaccurate. Therefore, in this study, we propose an effective method for the harvesting robot to recognize fruits using not only three-dimensional information obtained from the RGB-D camera but also two-dimensional images and information from the camera. Furthermore, we report a method for determining the ripeness of pears using the information on fruit detection. Through experiments, we confirmed that the proposed method satisfies the accuracy required for a harvesting robot to continuously harvest fruits.","PeriodicalId":37462,"journal":{"name":"ROBOMECH Journal","volume":"15 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Fruit recognition method for a harvesting robot with RGB-D cameras\",\"authors\":\"Yoshida, Takeshi, Kawahara, Takuya, Fukao, Takanori\",\"doi\":\"10.1186/s40648-022-00230-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we present a recognition method for a fruit-harvesting robot to automate the harvesting of pears and apples on joint V-shaped trellis. It is necessary to recognize the three-dimensional position of the harvesting target for harvesting by the fruit-harvesting robot to insert its end-effector. However, the RGB-D (red, green, blue and depth) camera on the harvesting robot has a problem in that the point cloud obtained in outdoor environments can be inaccurate. Therefore, in this study, we propose an effective method for the harvesting robot to recognize fruits using not only three-dimensional information obtained from the RGB-D camera but also two-dimensional images and information from the camera. Furthermore, we report a method for determining the ripeness of pears using the information on fruit detection. Through experiments, we confirmed that the proposed method satisfies the accuracy required for a harvesting robot to continuously harvest fruits.\",\"PeriodicalId\":37462,\"journal\":{\"name\":\"ROBOMECH Journal\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ROBOMECH Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40648-022-00230-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ROBOMECH Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40648-022-00230-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 13

摘要

在这项研究中,我们提出了一种水果收获机器人的识别方法,以实现梨和苹果在联合v型棚架上的自动收获。摘果机器人要插入末端执行器,必须对摘果目标的三维位置进行识别。然而,采收机器人上的RGB-D(红、绿、蓝、深)摄像头存在一个问题,即在室外环境下获得的点云可能不准确。因此,在本研究中,我们提出了一种有效的方法,使收获机器人既可以利用RGB-D相机获得的三维信息,又可以利用相机获得的二维图像和信息来识别水果。此外,我们报告了一种利用果实检测信息确定梨成熟度的方法。通过实验,我们证实了所提出的方法满足收获机器人连续收获水果的精度要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fruit recognition method for a harvesting robot with RGB-D cameras
In this study, we present a recognition method for a fruit-harvesting robot to automate the harvesting of pears and apples on joint V-shaped trellis. It is necessary to recognize the three-dimensional position of the harvesting target for harvesting by the fruit-harvesting robot to insert its end-effector. However, the RGB-D (red, green, blue and depth) camera on the harvesting robot has a problem in that the point cloud obtained in outdoor environments can be inaccurate. Therefore, in this study, we propose an effective method for the harvesting robot to recognize fruits using not only three-dimensional information obtained from the RGB-D camera but also two-dimensional images and information from the camera. Furthermore, we report a method for determining the ripeness of pears using the information on fruit detection. Through experiments, we confirmed that the proposed method satisfies the accuracy required for a harvesting robot to continuously harvest fruits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ROBOMECH Journal
ROBOMECH Journal Mathematics-Control and Optimization
CiteScore
3.20
自引率
7.10%
发文量
21
审稿时长
13 weeks
期刊介绍: ROBOMECH Journal focuses on advanced technologies and practical applications in the field of Robotics and Mechatronics. This field is driven by the steadily growing research, development and consumer demand for robots and systems. Advanced robots have been working in medical and hazardous environments, such as space and the deep sea as well as in the manufacturing environment. The scope of the journal includes but is not limited to: 1. Modeling and design 2. System integration 3. Actuators and sensors 4. Intelligent control 5. Artificial intelligence 6. Machine learning 7. Robotics 8. Manufacturing 9. Motion control 10. Vibration and noise control 11. Micro/nano devices and optoelectronics systems 12. Automotive systems 13. Applications for extreme and/or hazardous environments 14. Other applications
期刊最新文献
Computer vision-based visualization and quantification of body skeletal movements for investigation of traditional skills: the production of Kizumi winnowing baskets Measuring unit for synchronously collecting air dose rate and measurement position Length control of a McKibben pneumatic actuator using a dynamic quantizer Interactive driving of electrostatic film actuator by proximity motion of human body Development and flight-test verification of two-dimensional rotational low-airspeed sensor for small helicopters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1