一种提高窄间距水平井簇磁测距精度的算法

IF 2.4 4区 工程技术 Q3 ENERGY & FUELS Journal of Petroleum Exploration and Production Technology Pub Date : 2023-11-25 DOI:10.1007/s13202-023-01722-2
Binbin Diao, Deli Gao, Sen Zhang, Zhe Liu
{"title":"一种提高窄间距水平井簇磁测距精度的算法","authors":"Binbin Diao, Deli Gao, Sen Zhang, Zhe Liu","doi":"10.1007/s13202-023-01722-2","DOIUrl":null,"url":null,"abstract":"<p>In order to realize the efficient development of unconventional oil and gas, the measurement accuracy of wellbore spacing in the drilling of parallel horizontal wells is more and more required. Although the Rotating Magnet Ranging System or Magnetic Guidance Tool is used to achieve a good ranging effect in the drilling of dual horizontal wells, the position measurement of the magnetic sub leads to a large ranging error. A new ranging algorithm for the Two Sensor Packages-Rotating Magnet Ranging System is presented in this paper. The algorithm takes the magnetic signal generated by the rotation of the magnetic sub at a fixed position, the tilt measurement data of the two wells, the length of the magnetic sub, and the distance between the two fluxgate sensors as input parameters to avoid measuring the position of the magnetic sub and to reduce the influence of the degree of non-parallelism and the length of the magnetic sub. The simulation and experiment demonstrate that the inclination and azimuth angles of the two wells have a significant impact on the magnetic ranging results when the ranging well sections are not parallel and that the distance between the bottom of the drill bit and the center of the magnetic sub cannot be ignored. Moreover, the accuracy of the relative distance calculated by this new algorithm can reach 97%, and the error of direction calculation is less than 3°. Applying this algorithm in the field can successfully aid in controlling the spacing of cluster horizontal wells more accurately.</p>","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":"23 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An algorithm to improve magnetic ranging accuracy for cluster horizontal wells with narrow spacings\",\"authors\":\"Binbin Diao, Deli Gao, Sen Zhang, Zhe Liu\",\"doi\":\"10.1007/s13202-023-01722-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to realize the efficient development of unconventional oil and gas, the measurement accuracy of wellbore spacing in the drilling of parallel horizontal wells is more and more required. Although the Rotating Magnet Ranging System or Magnetic Guidance Tool is used to achieve a good ranging effect in the drilling of dual horizontal wells, the position measurement of the magnetic sub leads to a large ranging error. A new ranging algorithm for the Two Sensor Packages-Rotating Magnet Ranging System is presented in this paper. The algorithm takes the magnetic signal generated by the rotation of the magnetic sub at a fixed position, the tilt measurement data of the two wells, the length of the magnetic sub, and the distance between the two fluxgate sensors as input parameters to avoid measuring the position of the magnetic sub and to reduce the influence of the degree of non-parallelism and the length of the magnetic sub. The simulation and experiment demonstrate that the inclination and azimuth angles of the two wells have a significant impact on the magnetic ranging results when the ranging well sections are not parallel and that the distance between the bottom of the drill bit and the center of the magnetic sub cannot be ignored. Moreover, the accuracy of the relative distance calculated by this new algorithm can reach 97%, and the error of direction calculation is less than 3°. Applying this algorithm in the field can successfully aid in controlling the spacing of cluster horizontal wells more accurately.</p>\",\"PeriodicalId\":16723,\"journal\":{\"name\":\"Journal of Petroleum Exploration and Production Technology\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Exploration and Production Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13202-023-01722-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Exploration and Production Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13202-023-01722-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为了实现非常规油气的高效开发,对平行水平井钻井中井筒间距的测量精度提出了越来越高的要求。在双水平井钻井中,虽然采用旋转磁体测距系统或磁导工具实现了较好的测距效果,但磁短节的位置测量导致测距误差较大。提出了一种适用于双传感器包旋转磁体测距系统的新型测距算法。该算法取磁短节在固定位置旋转产生的磁信号、两井倾斜度测量数据、磁短节长度、和两个磁通门传感器之间的距离作为输入参数,以避免测量磁子的位置和减少的影响程度的non-parallelism和磁子的长度。仿真和实验证明了倾角和方位角度的两个井磁测距结果产生重大影响时,测距以及部分不平行,钻头的底部之间的距离和的中心磁性接头是不容忽视的。该算法计算的相对距离精度可达97%,方向计算误差小于3°。将该算法应用于现场,可以更准确地控制水平井簇间距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An algorithm to improve magnetic ranging accuracy for cluster horizontal wells with narrow spacings

In order to realize the efficient development of unconventional oil and gas, the measurement accuracy of wellbore spacing in the drilling of parallel horizontal wells is more and more required. Although the Rotating Magnet Ranging System or Magnetic Guidance Tool is used to achieve a good ranging effect in the drilling of dual horizontal wells, the position measurement of the magnetic sub leads to a large ranging error. A new ranging algorithm for the Two Sensor Packages-Rotating Magnet Ranging System is presented in this paper. The algorithm takes the magnetic signal generated by the rotation of the magnetic sub at a fixed position, the tilt measurement data of the two wells, the length of the magnetic sub, and the distance between the two fluxgate sensors as input parameters to avoid measuring the position of the magnetic sub and to reduce the influence of the degree of non-parallelism and the length of the magnetic sub. The simulation and experiment demonstrate that the inclination and azimuth angles of the two wells have a significant impact on the magnetic ranging results when the ranging well sections are not parallel and that the distance between the bottom of the drill bit and the center of the magnetic sub cannot be ignored. Moreover, the accuracy of the relative distance calculated by this new algorithm can reach 97%, and the error of direction calculation is less than 3°. Applying this algorithm in the field can successfully aid in controlling the spacing of cluster horizontal wells more accurately.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
4.50%
发文量
151
审稿时长
13 weeks
期刊介绍: The Journal of Petroleum Exploration and Production Technology is an international open access journal that publishes original and review articles as well as book reviews on leading edge studies in the field of petroleum engineering, petroleum geology and exploration geophysics and the implementation of related technologies to the development and management of oil and gas reservoirs from their discovery through their entire production cycle. Focusing on: Reservoir characterization and modeling Unconventional oil and gas reservoirs Geophysics: Acquisition and near surface Geophysics Modeling and Imaging Geophysics: Interpretation Geophysics: Processing Production Engineering Formation Evaluation Reservoir Management Petroleum Geology Enhanced Recovery Geomechanics Drilling Completions The Journal of Petroleum Exploration and Production Technology is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
期刊最新文献
Maximizing efficiency and uniformity in SAGD steam circulation through effect of heat convection The role of stylolites as a fluid conductive, in the heterogeneous carbonate reservoirs The influence of fracturing fluid temperature and viscosity on the migration and distribution of proppants within a fracture The reservoir screening standard of CO2 huff-n-puff based on orthogonal analysis method and random forest algorithm Identification of the low resistivity-low contrast (LRLC) gas-bearing pay zones in Shaly sand reservoirs using acoustic data: a case study from the Messinian Abu Madi formation, onshore Nile Delta, Egypt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1