Mohamed Ragab Abass, Maha Ali Youssef, Marwa Ahmed Eid
{"title":"基于羧甲基纤维素的无机复合材料:制备、表征、对放射性溶液中某些放射性核素的吸附和选择性行为","authors":"Mohamed Ragab Abass, Maha Ali Youssef, Marwa Ahmed Eid","doi":"10.1515/ract-2023-0214","DOIUrl":null,"url":null,"abstract":"This work is interested in the sorption and separation of <jats:sup>131</jats:sup>Ba, <jats:sup>109</jats:sup>Cd, <jats:sup>152+154</jats:sup>Eu, and <jats:sup>97</jats:sup>Zr from radioactive solutions onto barium molybdenum titanate loaded on carboxy methyl cellulose (BaMoTi@CMC) composites. In this work, different samples of BaMoTi@CMC composites were fabricated by the co-precipitation method and characterized using different analytical tools such as X-ray diffraction (XRD), attenuated total reflectance (ATR), and scanning electron microscope (SEM). The batch sorption investigations on <jats:sup>131</jats:sup>Ba, <jats:sup>109</jats:sup>Cd, <jats:sup>152+154</jats:sup>Eu, and <jats:sup>97</jats:sup>Zr include the influence of time, pH, and metal ion concentrations. The data reveal that S-3 has higher sorption efficiency than S-2 under all conditions. Isotherm is studied by Langmuir and Freundlich models. Binary systems data confirm that Cd(<jats:sc>ii</jats:sc>), Ba(<jats:sc>ii</jats:sc>), and Zr(<jats:sc>iv</jats:sc>) can be separated from Cd–Eu, Ba–Eu, and Zr–Eu binary systems using S-2 and S-3 at different pHs. Finally, the data prove that Zr(<jats:sc>iv</jats:sc>) and Ba(<jats:sc>ii</jats:sc>) can be easily separated from tertiary systems (Zr–Ba–Cd) onto S-2 and S-3 at pH 2.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inorganic composites based on carboxymethyl cellulose: preparation, characterization, sorption, and selectivity behavior for some radionuclides from radioactive solutions\",\"authors\":\"Mohamed Ragab Abass, Maha Ali Youssef, Marwa Ahmed Eid\",\"doi\":\"10.1515/ract-2023-0214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is interested in the sorption and separation of <jats:sup>131</jats:sup>Ba, <jats:sup>109</jats:sup>Cd, <jats:sup>152+154</jats:sup>Eu, and <jats:sup>97</jats:sup>Zr from radioactive solutions onto barium molybdenum titanate loaded on carboxy methyl cellulose (BaMoTi@CMC) composites. In this work, different samples of BaMoTi@CMC composites were fabricated by the co-precipitation method and characterized using different analytical tools such as X-ray diffraction (XRD), attenuated total reflectance (ATR), and scanning electron microscope (SEM). The batch sorption investigations on <jats:sup>131</jats:sup>Ba, <jats:sup>109</jats:sup>Cd, <jats:sup>152+154</jats:sup>Eu, and <jats:sup>97</jats:sup>Zr include the influence of time, pH, and metal ion concentrations. The data reveal that S-3 has higher sorption efficiency than S-2 under all conditions. Isotherm is studied by Langmuir and Freundlich models. Binary systems data confirm that Cd(<jats:sc>ii</jats:sc>), Ba(<jats:sc>ii</jats:sc>), and Zr(<jats:sc>iv</jats:sc>) can be separated from Cd–Eu, Ba–Eu, and Zr–Eu binary systems using S-2 and S-3 at different pHs. Finally, the data prove that Zr(<jats:sc>iv</jats:sc>) and Ba(<jats:sc>ii</jats:sc>) can be easily separated from tertiary systems (Zr–Ba–Cd) onto S-2 and S-3 at pH 2.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/ract-2023-0214\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/ract-2023-0214","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Inorganic composites based on carboxymethyl cellulose: preparation, characterization, sorption, and selectivity behavior for some radionuclides from radioactive solutions
This work is interested in the sorption and separation of 131Ba, 109Cd, 152+154Eu, and 97Zr from radioactive solutions onto barium molybdenum titanate loaded on carboxy methyl cellulose (BaMoTi@CMC) composites. In this work, different samples of BaMoTi@CMC composites were fabricated by the co-precipitation method and characterized using different analytical tools such as X-ray diffraction (XRD), attenuated total reflectance (ATR), and scanning electron microscope (SEM). The batch sorption investigations on 131Ba, 109Cd, 152+154Eu, and 97Zr include the influence of time, pH, and metal ion concentrations. The data reveal that S-3 has higher sorption efficiency than S-2 under all conditions. Isotherm is studied by Langmuir and Freundlich models. Binary systems data confirm that Cd(ii), Ba(ii), and Zr(iv) can be separated from Cd–Eu, Ba–Eu, and Zr–Eu binary systems using S-2 and S-3 at different pHs. Finally, the data prove that Zr(iv) and Ba(ii) can be easily separated from tertiary systems (Zr–Ba–Cd) onto S-2 and S-3 at pH 2.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.