{"title":"加强对自动同行评议制度障碍的审查","authors":"Gustavo Lúcius Fernandes, Pedro O. S. Vaz-de-Melo","doi":"10.1007/s00799-023-00382-1","DOIUrl":null,"url":null,"abstract":"<p>The peer review process is the main academic resource to ensure that science advances and is disseminated. To contribute to this important process, classification models were created to perform two tasks: the <i>review score prediction</i> (<i>RSP</i>) and the <i>paper decision prediction</i> (<i>PDP</i>). But what challenges prevent us from having a fully efficient system responsible for these tasks? And how far are we from having an automated system to take care of these two tasks? To answer these questions, in this work, we evaluated the general performance of existing state-of-the-art models for <i>RSP</i> and <i>PDP</i> tasks and investigated what types of instances these models tend to have difficulty classifying and how impactful they are. We found, for example, that the performance of a model to predict the final decision of a paper is 23.31% lower when it is exposed to difficult instances and that the classifiers make mistake with a very high confidence. These and other results lead us to conclude that there are groups of instances that can negatively impact the model’s performance. That way, the current state-of-the-art models have potential to helping editors to decide whether to approve or reject a paper; however, we are still far from having a system that is fully responsible for scoring a paper and decide if it will be accepted or rejected.</p>","PeriodicalId":44974,"journal":{"name":"International Journal on Digital Libraries","volume":"86 9 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the examination of obstacles in an automated peer review system\",\"authors\":\"Gustavo Lúcius Fernandes, Pedro O. S. Vaz-de-Melo\",\"doi\":\"10.1007/s00799-023-00382-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The peer review process is the main academic resource to ensure that science advances and is disseminated. To contribute to this important process, classification models were created to perform two tasks: the <i>review score prediction</i> (<i>RSP</i>) and the <i>paper decision prediction</i> (<i>PDP</i>). But what challenges prevent us from having a fully efficient system responsible for these tasks? And how far are we from having an automated system to take care of these two tasks? To answer these questions, in this work, we evaluated the general performance of existing state-of-the-art models for <i>RSP</i> and <i>PDP</i> tasks and investigated what types of instances these models tend to have difficulty classifying and how impactful they are. We found, for example, that the performance of a model to predict the final decision of a paper is 23.31% lower when it is exposed to difficult instances and that the classifiers make mistake with a very high confidence. These and other results lead us to conclude that there are groups of instances that can negatively impact the model’s performance. That way, the current state-of-the-art models have potential to helping editors to decide whether to approve or reject a paper; however, we are still far from having a system that is fully responsible for scoring a paper and decide if it will be accepted or rejected.</p>\",\"PeriodicalId\":44974,\"journal\":{\"name\":\"International Journal on Digital Libraries\",\"volume\":\"86 9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Digital Libraries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00799-023-00382-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00799-023-00382-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
Enhancing the examination of obstacles in an automated peer review system
The peer review process is the main academic resource to ensure that science advances and is disseminated. To contribute to this important process, classification models were created to perform two tasks: the review score prediction (RSP) and the paper decision prediction (PDP). But what challenges prevent us from having a fully efficient system responsible for these tasks? And how far are we from having an automated system to take care of these two tasks? To answer these questions, in this work, we evaluated the general performance of existing state-of-the-art models for RSP and PDP tasks and investigated what types of instances these models tend to have difficulty classifying and how impactful they are. We found, for example, that the performance of a model to predict the final decision of a paper is 23.31% lower when it is exposed to difficult instances and that the classifiers make mistake with a very high confidence. These and other results lead us to conclude that there are groups of instances that can negatively impact the model’s performance. That way, the current state-of-the-art models have potential to helping editors to decide whether to approve or reject a paper; however, we are still far from having a system that is fully responsible for scoring a paper and decide if it will be accepted or rejected.
期刊介绍:
The International Journal on Digital Libraries (IJDL) examines the theory and practice of acquisition definition organization management preservation and dissemination of digital information via global networking. It covers all aspects of digital libraries (DLs) from large-scale heterogeneous data and information management & access to linking and connectivity to security privacy and policies to its application use and evaluation.The scope of IJDL includes but is not limited to: The FAIR principle and the digital libraries infrastructure Findable: Information access and retrieval; semantic search; data and information exploration; information navigation; smart indexing and searching; resource discovery Accessible: visualization and digital collections; user interfaces; interfaces for handicapped users; HCI and UX in DLs; Security and privacy in DLs; multimodal access Interoperable: metadata (definition management curation integration); syntactic and semantic interoperability; linked data Reusable: reproducibility; Open Science; sustainability profitability repeatability of research results; confidentiality and privacy issues in DLs Digital Library Architectures including heterogeneous and dynamic data management; data and repositories Acquisition of digital information: authoring environments for digital objects; digitization of traditional content Digital Archiving and Preservation Digital Preservation and curation Digital archiving Web Archiving Archiving and preservation Strategies AI for Digital Libraries Machine Learning for DLs Data Mining in DLs NLP for DLs Applications of Digital Libraries Digital Humanities Open Data and their reuse Scholarly DLs (incl. bibliometrics altmetrics) Epigraphy and Paleography Digital Museums Future trends in Digital Libraries Definition of DLs in a ubiquitous digital library world Datafication of digital collections Interaction and user experience (UX) in DLs Information visualization Collection understanding Privacy and security Multimodal user interfaces Accessibility (or "Access for users with disabilities") UX studies