氢分子中X-X反振动跃迁强度的计算与观测分析

IF 1.4 4区 物理与天体物理 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Journal of Molecular Spectroscopy Pub Date : 2023-12-05 DOI:10.1016/j.jms.2023.111863
V.G. Ushakov , S.A. Balashev , E.S. Medvedev
{"title":"氢分子中X-X反振动跃迁强度的计算与观测分析","authors":"V.G. Ushakov ,&nbsp;S.A. Balashev ,&nbsp;E.S. Medvedev","doi":"10.1016/j.jms.2023.111863","DOIUrl":null,"url":null,"abstract":"<div><p>The potential-energy and quadrupole-moment functions of the H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> ground electronic state are well known in literature (Komasa et al., 2019; Wolniewicz et al., 1998), and the line list of the vibrational–rotational transitions was calculated (Roueff et al., 2019). In this paper, we analyze the calculated intensities in order to learn how the intensities will change when analytic quadrupole-moment functions fitted to the <em>ab initio</em> and experimental data are used instead of spline-interpolated functions. We found that the use of splines does not deteriorate the intensities and does not lead to nonphysical saturation, as in heavier molecules, owing to the high precision of the <em>ab initio</em> data and the high density of the grid. The accuracy of the calculated intensities is estimated up to high overtones. Extraction of new spectroscopic information from the observational data that supplements the laboratory measurements is performed. The laboratory and observational data do not help increase the quality of the analytic functions. Numerous anomalies resulting from the destructive interference are identified in the calculated line lists, some of them being situated within the recently observed spectral regions, 1.5–<span><math><mrow><mn>2</mn><mo>.</mo><mn>5</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>. The intensities of these anomalies can be sensitive to the form of the molecular functions as well as to the proton-to-electron mass ratio. In this connection, the similar Le Roy anomalies (Brown and LeRoy, 1973; Le Roy and Vrscay, 1975) also arising due to the destructive interference in the Lyman and Werner systems are discussed.</p></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"399 ","pages":"Article 111863"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the calculated and observed X-X ro-vibrational transition intensities in molecular hydrogen\",\"authors\":\"V.G. Ushakov ,&nbsp;S.A. Balashev ,&nbsp;E.S. Medvedev\",\"doi\":\"10.1016/j.jms.2023.111863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The potential-energy and quadrupole-moment functions of the H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> ground electronic state are well known in literature (Komasa et al., 2019; Wolniewicz et al., 1998), and the line list of the vibrational–rotational transitions was calculated (Roueff et al., 2019). In this paper, we analyze the calculated intensities in order to learn how the intensities will change when analytic quadrupole-moment functions fitted to the <em>ab initio</em> and experimental data are used instead of spline-interpolated functions. We found that the use of splines does not deteriorate the intensities and does not lead to nonphysical saturation, as in heavier molecules, owing to the high precision of the <em>ab initio</em> data and the high density of the grid. The accuracy of the calculated intensities is estimated up to high overtones. Extraction of new spectroscopic information from the observational data that supplements the laboratory measurements is performed. The laboratory and observational data do not help increase the quality of the analytic functions. Numerous anomalies resulting from the destructive interference are identified in the calculated line lists, some of them being situated within the recently observed spectral regions, 1.5–<span><math><mrow><mn>2</mn><mo>.</mo><mn>5</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>. The intensities of these anomalies can be sensitive to the form of the molecular functions as well as to the proton-to-electron mass ratio. In this connection, the similar Le Roy anomalies (Brown and LeRoy, 1973; Le Roy and Vrscay, 1975) also arising due to the destructive interference in the Lyman and Werner systems are discussed.</p></div>\",\"PeriodicalId\":16367,\"journal\":{\"name\":\"Journal of Molecular Spectroscopy\",\"volume\":\"399 \",\"pages\":\"Article 111863\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Spectroscopy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022285223001285\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022285223001285","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

H2基电子态的势能和四极矩函数在文献中是众所周知的(Komasa et al., 2019;Wolniewicz et al., 1998),并计算了振动-旋转转换的线列表(Roueff et al., 2019)。本文对计算得到的强度进行了分析,以了解当用拟合的解析四极矩函数和实验数据代替样条插值函数时强度的变化情况。我们发现,由于初始数据的高精度和网格的高密度,样条的使用不会降低强度,也不会像在较重的分子中那样导致非物理饱和。计算强度的精度估计到高泛音。从观测数据中提取新的光谱信息,补充实验室测量结果。实验室和观测数据无助于提高分析函数的质量。在计算的谱线表中发现了许多由破坏性干涉引起的异常,其中一些位于最近观测到的1.5-2.5μm光谱区域内。这些异常的强度可以对分子功能的形式以及质子与电子的质量比敏感。在这方面,类似的勒罗伊异常(Brown and LeRoy, 1973;Le Roy和Vrscay, 1975)也讨论了由于Lyman和Werner系统中的破坏性干涉而引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of the calculated and observed X-X ro-vibrational transition intensities in molecular hydrogen

The potential-energy and quadrupole-moment functions of the H2 ground electronic state are well known in literature (Komasa et al., 2019; Wolniewicz et al., 1998), and the line list of the vibrational–rotational transitions was calculated (Roueff et al., 2019). In this paper, we analyze the calculated intensities in order to learn how the intensities will change when analytic quadrupole-moment functions fitted to the ab initio and experimental data are used instead of spline-interpolated functions. We found that the use of splines does not deteriorate the intensities and does not lead to nonphysical saturation, as in heavier molecules, owing to the high precision of the ab initio data and the high density of the grid. The accuracy of the calculated intensities is estimated up to high overtones. Extraction of new spectroscopic information from the observational data that supplements the laboratory measurements is performed. The laboratory and observational data do not help increase the quality of the analytic functions. Numerous anomalies resulting from the destructive interference are identified in the calculated line lists, some of them being situated within the recently observed spectral regions, 1.5–2.5μm. The intensities of these anomalies can be sensitive to the form of the molecular functions as well as to the proton-to-electron mass ratio. In this connection, the similar Le Roy anomalies (Brown and LeRoy, 1973; Le Roy and Vrscay, 1975) also arising due to the destructive interference in the Lyman and Werner systems are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
21.40%
发文量
94
审稿时长
29 days
期刊介绍: The Journal of Molecular Spectroscopy presents experimental and theoretical articles on all subjects relevant to molecular spectroscopy and its modern applications. An international medium for the publication of some of the most significant research in the field, the Journal of Molecular Spectroscopy is an invaluable resource for astrophysicists, chemists, physicists, engineers, and others involved in molecular spectroscopy research and practice.
期刊最新文献
High resolution laser diode spectroscopy of the hot bands of C2HD in the first overtone region of C-H stretching Buffer-gas cooling of hydrogen cyanide quantified by cavity-ringdown spectroscopy Pure rotational spectroscopic measurements on the electronic ground states of Hafnium monosulfide and Thorium monosulfide in highly excited vibrational states Isotopic species, vibrational states and nuclear quadrupole splitting in CH2Cl2 from rotational spectroscopy at 8–18 GHz Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1