瑞利梁的短时角脉冲响应

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Journal of Engineering Mathematics Pub Date : 2023-11-21 DOI:10.1007/s10665-023-10302-6
Bidhayak Goswami, K. R. Jayaprakash, Anindya Chatterjee
{"title":"瑞利梁的短时角脉冲响应","authors":"Bidhayak Goswami, K. R. Jayaprakash, Anindya Chatterjee","doi":"10.1007/s10665-023-10302-6","DOIUrl":null,"url":null,"abstract":"<p>In the dynamics of linear structures, the impulse response function is of fundamental interest. In some cases one examines the short term response wherein the disturbance is still local and the boundaries have not yet come into play, and for such short-time analysis the geometrical extent of the structure may be taken as unbounded. Here we examine the response of slender beams to angular impulses. The Euler–Bernoulli model, which does not include rotary inertia of cross sections, predicts an unphysical and unbounded initial rotation at the point of application. A finite length Euler–Bernoulli beam, when modeled using finite elements, predicts a mesh-dependent response that shows fast large-amplitude oscillations setting in very quickly. The simplest introduction of rotary inertia yields the Rayleigh beam model, which has more reasonable behavior including a finite wave speed at all frequencies. If a Rayleigh beam is given an impulsive moment at a location away from its boundaries, then the predicted behavior has an instantaneous finite jump in local slope or rotation, followed by smooth evolution of the slope for a finite time interval until reflections arrive from the boundary, causing subsequent slope discontinuities in time. We present a detailed study of the angular impulse response of a simply supported Rayleigh beam, starting with dimensional analysis, followed by modal expansion including all natural frequencies, culminating with an asymptotic formula for the short-time response. The asymptotic formula is obtained by breaking the series solution into two parts to be treated independently term by term, and leads to a polynomial in time. The polynomial matches the response from refined finite element (FE) simulations.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":"13 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short time angular impulse response of Rayleigh beams\",\"authors\":\"Bidhayak Goswami, K. R. Jayaprakash, Anindya Chatterjee\",\"doi\":\"10.1007/s10665-023-10302-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the dynamics of linear structures, the impulse response function is of fundamental interest. In some cases one examines the short term response wherein the disturbance is still local and the boundaries have not yet come into play, and for such short-time analysis the geometrical extent of the structure may be taken as unbounded. Here we examine the response of slender beams to angular impulses. The Euler–Bernoulli model, which does not include rotary inertia of cross sections, predicts an unphysical and unbounded initial rotation at the point of application. A finite length Euler–Bernoulli beam, when modeled using finite elements, predicts a mesh-dependent response that shows fast large-amplitude oscillations setting in very quickly. The simplest introduction of rotary inertia yields the Rayleigh beam model, which has more reasonable behavior including a finite wave speed at all frequencies. If a Rayleigh beam is given an impulsive moment at a location away from its boundaries, then the predicted behavior has an instantaneous finite jump in local slope or rotation, followed by smooth evolution of the slope for a finite time interval until reflections arrive from the boundary, causing subsequent slope discontinuities in time. We present a detailed study of the angular impulse response of a simply supported Rayleigh beam, starting with dimensional analysis, followed by modal expansion including all natural frequencies, culminating with an asymptotic formula for the short-time response. The asymptotic formula is obtained by breaking the series solution into two parts to be treated independently term by term, and leads to a polynomial in time. The polynomial matches the response from refined finite element (FE) simulations.</p>\",\"PeriodicalId\":50204,\"journal\":{\"name\":\"Journal of Engineering Mathematics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Mathematics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-023-10302-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-023-10302-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在线性结构动力学中,脉冲响应函数具有重要的意义。在某些情况下,我们研究的是短期响应,其中扰动仍然是局部的,边界还没有发挥作用,对于这种短期分析,结构的几何范围可以被认为是无界的。这里我们研究了细长光束对角脉冲的响应。欧拉-伯努利模型不包括截面的转动惯量,预测在应用点处的非物理和无界初始旋转。有限长度的欧拉-伯努利梁,当使用有限元建模时,预测网格依赖的响应,显示出快速的大振幅振荡。最简单的旋转惯性引入产生了瑞利波束模型,该模型具有更合理的行为,包括在所有频率下的有限波速。如果在远离其边界的位置给予瑞利光束脉冲力矩,则预测的行为在局部斜率或旋转上具有瞬时有限跳跃,随后斜率在有限时间间隔内平滑演变,直到反射从边界到达,导致随后的斜率在时间上不连续。我们详细研究了简支瑞利梁的角脉冲响应,从量纲分析开始,然后是包括所有固有频率的模态展开,最后得到了一个短时间响应的渐近公式。通过将级数解分解为两部分逐项独立处理得到渐近公式,并在时间上得到一个多项式。该多项式与精细有限元(FE)模拟的响应相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Short time angular impulse response of Rayleigh beams

In the dynamics of linear structures, the impulse response function is of fundamental interest. In some cases one examines the short term response wherein the disturbance is still local and the boundaries have not yet come into play, and for such short-time analysis the geometrical extent of the structure may be taken as unbounded. Here we examine the response of slender beams to angular impulses. The Euler–Bernoulli model, which does not include rotary inertia of cross sections, predicts an unphysical and unbounded initial rotation at the point of application. A finite length Euler–Bernoulli beam, when modeled using finite elements, predicts a mesh-dependent response that shows fast large-amplitude oscillations setting in very quickly. The simplest introduction of rotary inertia yields the Rayleigh beam model, which has more reasonable behavior including a finite wave speed at all frequencies. If a Rayleigh beam is given an impulsive moment at a location away from its boundaries, then the predicted behavior has an instantaneous finite jump in local slope or rotation, followed by smooth evolution of the slope for a finite time interval until reflections arrive from the boundary, causing subsequent slope discontinuities in time. We present a detailed study of the angular impulse response of a simply supported Rayleigh beam, starting with dimensional analysis, followed by modal expansion including all natural frequencies, culminating with an asymptotic formula for the short-time response. The asymptotic formula is obtained by breaking the series solution into two parts to be treated independently term by term, and leads to a polynomial in time. The polynomial matches the response from refined finite element (FE) simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Engineering Mathematics
Journal of Engineering Mathematics 工程技术-工程:综合
CiteScore
2.10
自引率
7.70%
发文量
44
审稿时长
6 months
期刊介绍: The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following: • Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods. • Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas. The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly. Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.
期刊最新文献
Erosion of surfaces by trapped vortices Nanoparticle uptake by a semi-permeable, spherical cell from an external planar diffusive field. II. Numerical study of temporal and spatial development validated using FEM On the positive self-similar solutions of the boundary-layer wedge flow problem of a power-law fluid Experimental and theoretical investigation of impinging droplet solidification at moderate impact velocities Reflection and transmission of SH waves at the interface of a V-notch and a piezoelectric/piezomagnetic half-space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1