{"title":"深水漂浮pi型防波堤对波浪的散射","authors":"R. B. Kaligatla, S. Singh, B. N. Mandal","doi":"10.1007/s10665-023-10301-7","DOIUrl":null,"url":null,"abstract":"<p>This article presents a study on surface gravity wave scattering by a rectangular (box-type) breakwater with thin side plates in the situation of oblique incident waves in deep water. Applying the continuity of fluid pressure and velocity to Havelock’s expansion of velocity potentials, the problem is converted to an integral equation of the Fredholm type, whose solution is the horizontal component of fluid velocity. The integral equation is solved by employing Galerkin’s approximation with polynomials as basis functions multiplied by suitable weight functions. The wave reflection and transmission coefficients are calculated numerically to find the breakwater’s performance on wave scattering. The accuracy of the results is verified through numerical convergence and checking of the energy balance equation. The rectangular breakwater reflects long waves to some extent in water of infinite depth, in contrast to a thin breakwater. The thin plates attached to the rectangular breakwater show a reduction in wave transmission. Furthermore, the attachment of thin plates leads to an increment in horizontal force and a reduction in vertical force.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":"45 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave scattering by Pi-type breakwater floating in deep water\",\"authors\":\"R. B. Kaligatla, S. Singh, B. N. Mandal\",\"doi\":\"10.1007/s10665-023-10301-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article presents a study on surface gravity wave scattering by a rectangular (box-type) breakwater with thin side plates in the situation of oblique incident waves in deep water. Applying the continuity of fluid pressure and velocity to Havelock’s expansion of velocity potentials, the problem is converted to an integral equation of the Fredholm type, whose solution is the horizontal component of fluid velocity. The integral equation is solved by employing Galerkin’s approximation with polynomials as basis functions multiplied by suitable weight functions. The wave reflection and transmission coefficients are calculated numerically to find the breakwater’s performance on wave scattering. The accuracy of the results is verified through numerical convergence and checking of the energy balance equation. The rectangular breakwater reflects long waves to some extent in water of infinite depth, in contrast to a thin breakwater. The thin plates attached to the rectangular breakwater show a reduction in wave transmission. Furthermore, the attachment of thin plates leads to an increment in horizontal force and a reduction in vertical force.</p>\",\"PeriodicalId\":50204,\"journal\":{\"name\":\"Journal of Engineering Mathematics\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Mathematics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-023-10301-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-023-10301-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Wave scattering by Pi-type breakwater floating in deep water
This article presents a study on surface gravity wave scattering by a rectangular (box-type) breakwater with thin side plates in the situation of oblique incident waves in deep water. Applying the continuity of fluid pressure and velocity to Havelock’s expansion of velocity potentials, the problem is converted to an integral equation of the Fredholm type, whose solution is the horizontal component of fluid velocity. The integral equation is solved by employing Galerkin’s approximation with polynomials as basis functions multiplied by suitable weight functions. The wave reflection and transmission coefficients are calculated numerically to find the breakwater’s performance on wave scattering. The accuracy of the results is verified through numerical convergence and checking of the energy balance equation. The rectangular breakwater reflects long waves to some extent in water of infinite depth, in contrast to a thin breakwater. The thin plates attached to the rectangular breakwater show a reduction in wave transmission. Furthermore, the attachment of thin plates leads to an increment in horizontal force and a reduction in vertical force.
期刊介绍:
The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following:
• Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods.
• Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas.
The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly.
Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.