Chunyan Wu, Abudurusuli tusun, Youssef Dewer, Fengqi Li
{"title":"纤毛桃损伤诱导的尖叶扁桃细胞色素P450基因的系统鉴定和进化分析","authors":"Chunyan Wu, Abudurusuli tusun, Youssef Dewer, Fengqi Li","doi":"10.1007/s40415-023-00959-9","DOIUrl":null,"url":null,"abstract":"<p>The sycamore lace bug <i>Corythucha ciliata</i> (say) is the most important pest attacked the London planetree <i>Platanus acerifolia</i> worldwide. We propose that plant cytochrome P450s (CYP450s) are important and play key roles in <i>P. acerifolia</i> and <i>C. ciliata</i> interactions. Therefore, the identification of transcriptionally active CYP450 genes is considered essential for revealing the mechanisms involved in their interactions. So far, the CYP450 genes of <i>P. acerifolia</i> have not yet been reported. In this study, we identified and characterized 96 CYP450 genes in <i>P. acerifolia</i>. These genes were categorized into 8 clans, 41 families, and 60 subfamilies. Notably, 48 genes demonstrated a strong negative selection when compared with the CYP450 genes of <i>Arabidopsis thaliana</i>. The results of post-feeding induction of <i>P. acerifolia</i> by <i>C. ciliata</i> revealed ten CYP450 genes, which exhibited significant up-regulation. Gene expression levels of several identified CYP450 genes were validated by quantitative RT- PCR. Further, a putative allene oxide synthase gene encoding the key enzyme involved in the jasmonic acid biosynthesis (PaCYP74A187) was cloned, homology modeled, and subjected to molecular docking analysis. We propose PaCYP74A187 as a key candidate CYP450 gene in <i>P. acerifolia</i> induced by <i>C. ciliata</i> damage, altogether our findings enhance comprehensive understanding of the mechanisms associated with insect-plant interactions that will undoubtedly offer new targets for controlling <i>C. ciliata</i> populations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic identification and evolutionary analysis of cytochrome P450 genes in Platanus acerifolia induced by Corythucha ciliata damage\",\"authors\":\"Chunyan Wu, Abudurusuli tusun, Youssef Dewer, Fengqi Li\",\"doi\":\"10.1007/s40415-023-00959-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The sycamore lace bug <i>Corythucha ciliata</i> (say) is the most important pest attacked the London planetree <i>Platanus acerifolia</i> worldwide. We propose that plant cytochrome P450s (CYP450s) are important and play key roles in <i>P. acerifolia</i> and <i>C. ciliata</i> interactions. Therefore, the identification of transcriptionally active CYP450 genes is considered essential for revealing the mechanisms involved in their interactions. So far, the CYP450 genes of <i>P. acerifolia</i> have not yet been reported. In this study, we identified and characterized 96 CYP450 genes in <i>P. acerifolia</i>. These genes were categorized into 8 clans, 41 families, and 60 subfamilies. Notably, 48 genes demonstrated a strong negative selection when compared with the CYP450 genes of <i>Arabidopsis thaliana</i>. The results of post-feeding induction of <i>P. acerifolia</i> by <i>C. ciliata</i> revealed ten CYP450 genes, which exhibited significant up-regulation. Gene expression levels of several identified CYP450 genes were validated by quantitative RT- PCR. Further, a putative allene oxide synthase gene encoding the key enzyme involved in the jasmonic acid biosynthesis (PaCYP74A187) was cloned, homology modeled, and subjected to molecular docking analysis. We propose PaCYP74A187 as a key candidate CYP450 gene in <i>P. acerifolia</i> induced by <i>C. ciliata</i> damage, altogether our findings enhance comprehensive understanding of the mechanisms associated with insect-plant interactions that will undoubtedly offer new targets for controlling <i>C. ciliata</i> populations.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s40415-023-00959-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s40415-023-00959-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Systematic identification and evolutionary analysis of cytochrome P450 genes in Platanus acerifolia induced by Corythucha ciliata damage
The sycamore lace bug Corythucha ciliata (say) is the most important pest attacked the London planetree Platanus acerifolia worldwide. We propose that plant cytochrome P450s (CYP450s) are important and play key roles in P. acerifolia and C. ciliata interactions. Therefore, the identification of transcriptionally active CYP450 genes is considered essential for revealing the mechanisms involved in their interactions. So far, the CYP450 genes of P. acerifolia have not yet been reported. In this study, we identified and characterized 96 CYP450 genes in P. acerifolia. These genes were categorized into 8 clans, 41 families, and 60 subfamilies. Notably, 48 genes demonstrated a strong negative selection when compared with the CYP450 genes of Arabidopsis thaliana. The results of post-feeding induction of P. acerifolia by C. ciliata revealed ten CYP450 genes, which exhibited significant up-regulation. Gene expression levels of several identified CYP450 genes were validated by quantitative RT- PCR. Further, a putative allene oxide synthase gene encoding the key enzyme involved in the jasmonic acid biosynthesis (PaCYP74A187) was cloned, homology modeled, and subjected to molecular docking analysis. We propose PaCYP74A187 as a key candidate CYP450 gene in P. acerifolia induced by C. ciliata damage, altogether our findings enhance comprehensive understanding of the mechanisms associated with insect-plant interactions that will undoubtedly offer new targets for controlling C. ciliata populations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.