{"title":"一种新的熵测度及其在复杂球面模糊环境下COPRAS方法中的应用","authors":"Ebru Aydoğdu, Başak Aldemir, Elif Güner, Halis Aygün","doi":"10.15388/23-infor539","DOIUrl":null,"url":null,"abstract":"A complex spherical fuzzy set (CSFS) is a generalization of the spherical fuzzy set (SFS) to express the two-dimensional ambiguous information in which the range of positive, neutral and negative degrees occurs in the complex plane with the unit disk. Considering the vital importance of the concept of CSFSs which is gaining massive attention in the research area of two-dimensional uncertain information, we aim to establish a novel methodology for multi-criteria group decision-making (MCGDM). This methodology allows us to calculate both the weights of the decision-makers (DMs) and the weights of the criteria objectively. For this goal, we first introduce a new entropy measure function that measures the fuzziness degree associated with a CSFS to compute the unknown criteria weights in this methodology. Then, we present an innovative Complex Proportional Assessment (COPRAS) method based on the proposed entropy measure in the complex spherical fuzzy environment. Besides, we solve a strategic supplier selection problem which is very important to maximize the efficiency of the trading companies. Finally, we present some comparative analyses with some existing methods in different set theories, including the entropy measures, to show the feasibility and usefulness of the proposed method in the decision-making process.\nPDF XML","PeriodicalId":56292,"journal":{"name":"Informatica","volume":"38 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Entropy Measure with its Application to the COPRAS Method in Complex Spherical Fuzzy Environment\",\"authors\":\"Ebru Aydoğdu, Başak Aldemir, Elif Güner, Halis Aygün\",\"doi\":\"10.15388/23-infor539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A complex spherical fuzzy set (CSFS) is a generalization of the spherical fuzzy set (SFS) to express the two-dimensional ambiguous information in which the range of positive, neutral and negative degrees occurs in the complex plane with the unit disk. Considering the vital importance of the concept of CSFSs which is gaining massive attention in the research area of two-dimensional uncertain information, we aim to establish a novel methodology for multi-criteria group decision-making (MCGDM). This methodology allows us to calculate both the weights of the decision-makers (DMs) and the weights of the criteria objectively. For this goal, we first introduce a new entropy measure function that measures the fuzziness degree associated with a CSFS to compute the unknown criteria weights in this methodology. Then, we present an innovative Complex Proportional Assessment (COPRAS) method based on the proposed entropy measure in the complex spherical fuzzy environment. Besides, we solve a strategic supplier selection problem which is very important to maximize the efficiency of the trading companies. Finally, we present some comparative analyses with some existing methods in different set theories, including the entropy measures, to show the feasibility and usefulness of the proposed method in the decision-making process.\\nPDF XML\",\"PeriodicalId\":56292,\"journal\":{\"name\":\"Informatica\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.15388/23-infor539\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.15388/23-infor539","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Novel Entropy Measure with its Application to the COPRAS Method in Complex Spherical Fuzzy Environment
A complex spherical fuzzy set (CSFS) is a generalization of the spherical fuzzy set (SFS) to express the two-dimensional ambiguous information in which the range of positive, neutral and negative degrees occurs in the complex plane with the unit disk. Considering the vital importance of the concept of CSFSs which is gaining massive attention in the research area of two-dimensional uncertain information, we aim to establish a novel methodology for multi-criteria group decision-making (MCGDM). This methodology allows us to calculate both the weights of the decision-makers (DMs) and the weights of the criteria objectively. For this goal, we first introduce a new entropy measure function that measures the fuzziness degree associated with a CSFS to compute the unknown criteria weights in this methodology. Then, we present an innovative Complex Proportional Assessment (COPRAS) method based on the proposed entropy measure in the complex spherical fuzzy environment. Besides, we solve a strategic supplier selection problem which is very important to maximize the efficiency of the trading companies. Finally, we present some comparative analyses with some existing methods in different set theories, including the entropy measures, to show the feasibility and usefulness of the proposed method in the decision-making process.
PDF XML
期刊介绍:
The quarterly journal Informatica provides an international forum for high-quality original research and publishes papers on mathematical simulation and optimization, recognition and control, programming theory and systems, automation systems and elements. Informatica provides a multidisciplinary forum for scientists and engineers involved in research and design including experts who implement and manage information systems applications.