{"title":"定义诺伊曼域的光谱位置","authors":"Ram Band, Graham Cox, Sebastian K. Egger","doi":"10.2140/apde.2023.16.2147","DOIUrl":null,"url":null,"abstract":"<p>A Laplacian eigenfunction on a two-dimensional Riemannian manifold provides a natural partition into Neumann domains, a.k.a. a Morse–Smale complex. This partition is generated by gradient flow lines of the eigenfunction, which bound the so-called Neumann domains. We prove that the Neumann Laplacian defined on a Neumann domain is self-adjoint and has a purely discrete spectrum. In addition, we prove that the restriction of an eigenfunction to any one of its Neumann domains is an eigenfunction of the Neumann Laplacian. By comparison, similar statements about the Dirichlet Laplacian on a nodal domain of an eigenfunction are basic and well-known. The difficulty here is that the boundary of a Neumann domain may have cusps and cracks, so standard results about Sobolev spaces are not available. Another very useful common fact is that the restricted eigenfunction on a nodal domain is the first eigenfunction of the Dirichlet Laplacian. This is no longer true for a Neumann domain. Our results enable the investigation of the resulting spectral position problem for Neumann domains, which is much more involved than its nodal analogue. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"9 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Defining the spectral position of a Neumann domain\",\"authors\":\"Ram Band, Graham Cox, Sebastian K. Egger\",\"doi\":\"10.2140/apde.2023.16.2147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A Laplacian eigenfunction on a two-dimensional Riemannian manifold provides a natural partition into Neumann domains, a.k.a. a Morse–Smale complex. This partition is generated by gradient flow lines of the eigenfunction, which bound the so-called Neumann domains. We prove that the Neumann Laplacian defined on a Neumann domain is self-adjoint and has a purely discrete spectrum. In addition, we prove that the restriction of an eigenfunction to any one of its Neumann domains is an eigenfunction of the Neumann Laplacian. By comparison, similar statements about the Dirichlet Laplacian on a nodal domain of an eigenfunction are basic and well-known. The difficulty here is that the boundary of a Neumann domain may have cusps and cracks, so standard results about Sobolev spaces are not available. Another very useful common fact is that the restricted eigenfunction on a nodal domain is the first eigenfunction of the Dirichlet Laplacian. This is no longer true for a Neumann domain. Our results enable the investigation of the resulting spectral position problem for Neumann domains, which is much more involved than its nodal analogue. </p>\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2023.16.2147\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2023.16.2147","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Defining the spectral position of a Neumann domain
A Laplacian eigenfunction on a two-dimensional Riemannian manifold provides a natural partition into Neumann domains, a.k.a. a Morse–Smale complex. This partition is generated by gradient flow lines of the eigenfunction, which bound the so-called Neumann domains. We prove that the Neumann Laplacian defined on a Neumann domain is self-adjoint and has a purely discrete spectrum. In addition, we prove that the restriction of an eigenfunction to any one of its Neumann domains is an eigenfunction of the Neumann Laplacian. By comparison, similar statements about the Dirichlet Laplacian on a nodal domain of an eigenfunction are basic and well-known. The difficulty here is that the boundary of a Neumann domain may have cusps and cracks, so standard results about Sobolev spaces are not available. Another very useful common fact is that the restricted eigenfunction on a nodal domain is the first eigenfunction of the Dirichlet Laplacian. This is no longer true for a Neumann domain. Our results enable the investigation of the resulting spectral position problem for Neumann domains, which is much more involved than its nodal analogue.
期刊介绍:
APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.