基于模型的生成对抗网络(MI-GAN)的最优潮流学习

IF 2 3区 工程技术 Q3 ENGINEERING, INDUSTRIAL IISE Transactions Pub Date : 2023-11-28 DOI:10.1080/24725854.2023.2286507
Yuxuan Li, Chaoyue Zhao, Chenang Liu
{"title":"基于模型的生成对抗网络(MI-GAN)的最优潮流学习","authors":"Yuxuan Li, Chaoyue Zhao, Chenang Liu","doi":"10.1080/24725854.2023.2286507","DOIUrl":null,"url":null,"abstract":"The optimal power flow (OPF) problem, as a critical component of power system operations, becomes increasingly difficult to solve due to the variability, intermittency, and unpredictability of rene...","PeriodicalId":56039,"journal":{"name":"IISE Transactions","volume":"36 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-Informed Generative Adversarial Network (MI-GAN) for Learning Optimal Power Flow\",\"authors\":\"Yuxuan Li, Chaoyue Zhao, Chenang Liu\",\"doi\":\"10.1080/24725854.2023.2286507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimal power flow (OPF) problem, as a critical component of power system operations, becomes increasingly difficult to solve due to the variability, intermittency, and unpredictability of rene...\",\"PeriodicalId\":56039,\"journal\":{\"name\":\"IISE Transactions\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IISE Transactions\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/24725854.2023.2286507\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISE Transactions","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/24725854.2023.2286507","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

最优潮流(OPF)问题作为电力系统运行的一个重要组成部分,由于电力系统的可变性、间歇性和不可预测性,使其日益难以解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-Informed Generative Adversarial Network (MI-GAN) for Learning Optimal Power Flow
The optimal power flow (OPF) problem, as a critical component of power system operations, becomes increasingly difficult to solve due to the variability, intermittency, and unpredictability of rene...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IISE Transactions
IISE Transactions Engineering-Industrial and Manufacturing Engineering
CiteScore
5.70
自引率
7.70%
发文量
93
期刊介绍: IISE Transactions is currently abstracted/indexed in the following services: CSA/ASCE Civil Engineering Abstracts; CSA-Computer & Information Systems Abstracts; CSA-Corrosion Abstracts; CSA-Electronics & Communications Abstracts; CSA-Engineered Materials Abstracts; CSA-Materials Research Database with METADEX; CSA-Mechanical & Transportation Engineering Abstracts; CSA-Solid State & Superconductivity Abstracts; INSPEC Information Services and Science Citation Index. Institute of Industrial and Systems Engineers and our publisher Taylor & Francis make every effort to ensure the accuracy of all the information (the "Content") contained in our publications. However, Institute of Industrial and Systems Engineers and our publisher Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Institute of Industrial and Systems Engineers and our publisher Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Institute of Industrial and Systems Engineers and our publisher Taylor & Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to, or arising out of the use of the Content. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions .
期刊最新文献
Robust Optimization Approaches in Inventory Management: Part A - The Survey Robust Optimization Approaches in Inventory Management: Part B - The Comparative Study FUSION3D: Multimodal Data Fusion for 3D Shape Reconstruction - A Soft Sensing Approach Adversarial Client Detection via Non-parametric Subspace Monitoring in the Internet of Federated Things Robust Radiotherapy Planning with Spatially Based Uncertainty Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1