CHAD:组合同态自动微分

IF 1.5 2区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Programming Languages and Systems Pub Date : 2022-08-17 DOI:https://dl.acm.org/doi/10.1145/3527634
Matthijs Vákár, Tom Smeding
{"title":"CHAD:组合同态自动微分","authors":"Matthijs Vákár, Tom Smeding","doi":"https://dl.acm.org/doi/10.1145/3527634","DOIUrl":null,"url":null,"abstract":"<p>We introduce Combinatory Homomorphic Automatic Differentiation (CHAD), a principled, pure, provably correct define-then-run method for performing forward and reverse mode automatic differentiation (AD) on programming languages with expressive features. It implements AD as a compositional, type-respecting source-code transformation that generates purely functional code. This code transformation is principled in the sense that it is the unique homomorphic (structure preserving) extension to expressive languages of Elliott’s well-known and unambiguous definitions of AD for a first-order functional language. Correctness of the method follows by a (compositional) logical relations argument that shows that the semantics of the syntactic derivative is the usual calculus derivative of the semantics of the original program.</p><p>In their most elegant formulation, the transformations generate code with linear types. However, the code transformations can be implemented in a standard functional language lacking linear types: While the correctness proof requires tracking of linearity, the actual transformations do not. In fact, even in a standard functional language, we can get all of the type-safety that linear types give us: We can implement all linear types used to type the transformations as abstract types by using a basic module system.</p><p>In this article, we detail the method when applied to a simple higher-order language for manipulating statically sized arrays. However, we explain how the methodology applies, more generally, to functional languages with other expressive features. Finally, we discuss how the scope of CHAD extends beyond applications in AD to other dynamic program analyses that accumulate data in a commutative monoid.</p>","PeriodicalId":50939,"journal":{"name":"ACM Transactions on Programming Languages and Systems","volume":"81 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CHAD: Combinatory Homomorphic Automatic Differentiation\",\"authors\":\"Matthijs Vákár, Tom Smeding\",\"doi\":\"https://dl.acm.org/doi/10.1145/3527634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce Combinatory Homomorphic Automatic Differentiation (CHAD), a principled, pure, provably correct define-then-run method for performing forward and reverse mode automatic differentiation (AD) on programming languages with expressive features. It implements AD as a compositional, type-respecting source-code transformation that generates purely functional code. This code transformation is principled in the sense that it is the unique homomorphic (structure preserving) extension to expressive languages of Elliott’s well-known and unambiguous definitions of AD for a first-order functional language. Correctness of the method follows by a (compositional) logical relations argument that shows that the semantics of the syntactic derivative is the usual calculus derivative of the semantics of the original program.</p><p>In their most elegant formulation, the transformations generate code with linear types. However, the code transformations can be implemented in a standard functional language lacking linear types: While the correctness proof requires tracking of linearity, the actual transformations do not. In fact, even in a standard functional language, we can get all of the type-safety that linear types give us: We can implement all linear types used to type the transformations as abstract types by using a basic module system.</p><p>In this article, we detail the method when applied to a simple higher-order language for manipulating statically sized arrays. However, we explain how the methodology applies, more generally, to functional languages with other expressive features. Finally, we discuss how the scope of CHAD extends beyond applications in AD to other dynamic program analyses that accumulate data in a commutative monoid.</p>\",\"PeriodicalId\":50939,\"journal\":{\"name\":\"ACM Transactions on Programming Languages and Systems\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Programming Languages and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3527634\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Programming Languages and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3527634","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了组合同态自动微分(CHAD),这是一种原则性的、纯粹的、可证明正确的先定义后运行方法,用于对具有表达特征的编程语言执行正向和反向模式自动微分(AD)。它将AD实现为一个组合的、尊重类型的源代码转换,生成纯功能代码。这种代码转换在某种意义上是原则性的,因为它是艾略特对一阶函数语言的AD的著名和明确定义的唯一同态(保持结构)扩展到表达语言。方法的正确性之后是一个(组合)逻辑关系参数,该参数表明句法导数的语义是原始程序语义的通常演算导数。在它们最优雅的表述中,转换生成具有线性类型的代码。然而,代码转换可以在缺乏线性类型的标准函数式语言中实现:虽然正确性证明需要跟踪线性,但实际的转换不需要。事实上,即使在标准的函数式语言中,我们也可以获得线性类型提供的所有类型安全:通过使用基本模块系统,我们可以将用于将转换类型转换为抽象类型的所有线性类型实现。在本文中,我们将详细介绍该方法在用于操作静态大小数组的简单高阶语言中的应用。然而,我们解释了该方法如何更普遍地应用于具有其他表达特性的函数式语言。最后,我们讨论了CHAD的范围如何从AD中的应用扩展到在交换单群中积累数据的其他动态程序分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CHAD: Combinatory Homomorphic Automatic Differentiation

We introduce Combinatory Homomorphic Automatic Differentiation (CHAD), a principled, pure, provably correct define-then-run method for performing forward and reverse mode automatic differentiation (AD) on programming languages with expressive features. It implements AD as a compositional, type-respecting source-code transformation that generates purely functional code. This code transformation is principled in the sense that it is the unique homomorphic (structure preserving) extension to expressive languages of Elliott’s well-known and unambiguous definitions of AD for a first-order functional language. Correctness of the method follows by a (compositional) logical relations argument that shows that the semantics of the syntactic derivative is the usual calculus derivative of the semantics of the original program.

In their most elegant formulation, the transformations generate code with linear types. However, the code transformations can be implemented in a standard functional language lacking linear types: While the correctness proof requires tracking of linearity, the actual transformations do not. In fact, even in a standard functional language, we can get all of the type-safety that linear types give us: We can implement all linear types used to type the transformations as abstract types by using a basic module system.

In this article, we detail the method when applied to a simple higher-order language for manipulating statically sized arrays. However, we explain how the methodology applies, more generally, to functional languages with other expressive features. Finally, we discuss how the scope of CHAD extends beyond applications in AD to other dynamic program analyses that accumulate data in a commutative monoid.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Programming Languages and Systems
ACM Transactions on Programming Languages and Systems 工程技术-计算机:软件工程
CiteScore
3.10
自引率
7.70%
发文量
28
审稿时长
>12 weeks
期刊介绍: ACM Transactions on Programming Languages and Systems (TOPLAS) is the premier journal for reporting recent research advances in the areas of programming languages, and systems to assist the task of programming. Papers can be either theoretical or experimental in style, but in either case, they must contain innovative and novel content that advances the state of the art of programming languages and systems. We also invite strictly experimental papers that compare existing approaches, as well as tutorial and survey papers. The scope of TOPLAS includes, but is not limited to, the following subjects: language design for sequential and parallel programming programming language implementation programming language semantics compilers and interpreters runtime systems for program execution storage allocation and garbage collection languages and methods for writing program specifications languages and methods for secure and reliable programs testing and verification of programs
期刊最新文献
Proving Correctness of Parallel Implementations of Transition System Models CFLOBDDs: Context-Free-Language Ordered Binary Decision Diagrams Adversities in Abstract Interpretation: Accommodating Robustness by Abstract Interpretation: ACM Transactions on Programming Languages and Systems: Vol 0, No ja Homeostasis: Design and Implementation of a Self-Stabilizing Compiler Locally Abstract, Globally Concrete Semantics of Concurrent Programming Languages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1