{"title":"大气边界层大涡模拟中的相干沉降结构","authors":"Florent Brient, Fleur Couvreux, Catherine Rio, Rachel Honnert","doi":"10.1002/qj.4625","DOIUrl":null,"url":null,"abstract":"Coherent structures are characterized in high-resolution simulations of three atmospheric boundary layers: dry convection, marine cumulus, and stratocumulus. Based on radioactive-decaying tracers emitted at different altitudes (surface, top of well-mixed layer, and cloud top), a object-oriented methodology allows individual characterization of coherent tridimensional plumes within the flow.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":"26 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coherent subsiding structures in large eddy simulations of atmospheric boundary layers\",\"authors\":\"Florent Brient, Fleur Couvreux, Catherine Rio, Rachel Honnert\",\"doi\":\"10.1002/qj.4625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coherent structures are characterized in high-resolution simulations of three atmospheric boundary layers: dry convection, marine cumulus, and stratocumulus. Based on radioactive-decaying tracers emitted at different altitudes (surface, top of well-mixed layer, and cloud top), a object-oriented methodology allows individual characterization of coherent tridimensional plumes within the flow.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4625\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4625","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Coherent subsiding structures in large eddy simulations of atmospheric boundary layers
Coherent structures are characterized in high-resolution simulations of three atmospheric boundary layers: dry convection, marine cumulus, and stratocumulus. Based on radioactive-decaying tracers emitted at different altitudes (surface, top of well-mixed layer, and cloud top), a object-oriented methodology allows individual characterization of coherent tridimensional plumes within the flow.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.