内侵蚀作用下无粘性土不排水力学特性演变的试验研究

IF 0.8 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL Soil Mechanics and Foundation Engineering Pub Date : 2023-12-04 DOI:10.1007/s11204-023-09919-7
L. Chen, S.-F. Yan, J.-J. He, Y. Wan
{"title":"内侵蚀作用下无粘性土不排水力学特性演变的试验研究","authors":"L. Chen, S.-F. Yan, J.-J. He, Y. Wan","doi":"10.1007/s11204-023-09919-7","DOIUrl":null,"url":null,"abstract":"<p>Internal erosion plays a significant role in the failure of earth structures. In this paper, the fine particle elimination method is used, and a series of triaxial consolidated undrained shear tests is conducted to investigate the evolution of undrained mechanical characteristics of soils due to internal erosion. The result indicates that the soil specimen with a larger loss rate of fine particles exhibits a lower undrained peak strength and lower undrained peak friction angle; the undrained peak strength increases with increasing confining pressure, and the initial relative density has a complex effect on the undrained peak strength and the undrained peak friction angle. Finally, the Mohr-Coulomb failure criterion is modified to predict the total failure shear stress of soils subjected to erosion.</p>","PeriodicalId":21918,"journal":{"name":"Soil Mechanics and Foundation Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigations on the Evolution of Undrained Mechanical Characteristics of Cohesionless Soils Subjected to Internal Erosion\",\"authors\":\"L. Chen, S.-F. Yan, J.-J. He, Y. Wan\",\"doi\":\"10.1007/s11204-023-09919-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Internal erosion plays a significant role in the failure of earth structures. In this paper, the fine particle elimination method is used, and a series of triaxial consolidated undrained shear tests is conducted to investigate the evolution of undrained mechanical characteristics of soils due to internal erosion. The result indicates that the soil specimen with a larger loss rate of fine particles exhibits a lower undrained peak strength and lower undrained peak friction angle; the undrained peak strength increases with increasing confining pressure, and the initial relative density has a complex effect on the undrained peak strength and the undrained peak friction angle. Finally, the Mohr-Coulomb failure criterion is modified to predict the total failure shear stress of soils subjected to erosion.</p>\",\"PeriodicalId\":21918,\"journal\":{\"name\":\"Soil Mechanics and Foundation Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Mechanics and Foundation Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11204-023-09919-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Mechanics and Foundation Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11204-023-09919-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

内部侵蚀对土质结构的破坏起着重要的作用。本文采用细颗粒消除法,进行了一系列三轴固结不排水剪切试验,研究了内侵蚀作用下土体不排水力学特性的演变规律。结果表明:细颗粒损失率越大的土样不排水峰值强度越低,不排水峰值摩擦角越小;不排水峰值强度随围压的增大而增大,初始相对密度对不排水峰值强度和不排水峰值摩擦角有复杂的影响。最后,修正Mohr-Coulomb破坏准则,预测侵蚀作用下土体的总破坏剪应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Investigations on the Evolution of Undrained Mechanical Characteristics of Cohesionless Soils Subjected to Internal Erosion

Internal erosion plays a significant role in the failure of earth structures. In this paper, the fine particle elimination method is used, and a series of triaxial consolidated undrained shear tests is conducted to investigate the evolution of undrained mechanical characteristics of soils due to internal erosion. The result indicates that the soil specimen with a larger loss rate of fine particles exhibits a lower undrained peak strength and lower undrained peak friction angle; the undrained peak strength increases with increasing confining pressure, and the initial relative density has a complex effect on the undrained peak strength and the undrained peak friction angle. Finally, the Mohr-Coulomb failure criterion is modified to predict the total failure shear stress of soils subjected to erosion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
65
审稿时长
6 months
期刊介绍: Soil Mechanics and Foundation Engineering provides the Western engineer with a look at Russian advances in heavy construction techniques. Detailed contributions by experienced civil engineers offer insights into current difficulties in the field, applicable innovative solutions, and recently developed guidelines for soil analysis and foundation design.
期刊最新文献
Strength Degradation of Fractured Sandstone After Thawing of an Inclined Shaft Produced by Artificial Freezing Numerical Analysis of Pullout Bearing Capacity of End-Bearing Torpedo Anchors A Method for Calculating the Amount of Unfrozen Water in Frozen Saline Soils The Effect of Temperature Pathways on Unfrozen Water and Thermal Parameters of Frozen Soils Permeability Characteristics of Sedimentary Fine Tailings Including the Degree of Compaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1