基于热-流-固耦合模型的增强型地热系统传热分析

IF 1.2 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Geofluids Pub Date : 2023-11-16 DOI:10.1155/2023/8840352
Linchao Wang, Xin Liang, Xuyang Shi, Jianyong Han, Yang Chen, Wan Zhang
{"title":"基于热-流-固耦合模型的增强型地热系统传热分析","authors":"Linchao Wang, Xin Liang, Xuyang Shi, Jianyong Han, Yang Chen, Wan Zhang","doi":"10.1155/2023/8840352","DOIUrl":null,"url":null,"abstract":"Dry hot rock geothermal resources by virtue of its wide distribution, large reserves, clean and low-carbon, stable, high utilization rate, and other characteristics have been widely used. The enhanced geothermal system (EGS) is the most efficient approach for harnessing and exploiting geothermal energy from hot, arid rock formations. To investigate the impact of varying parameters on heat recovery in EGS operations, we employed the COMSOL numerical simulation software to construct a seepage heat transfer model for fractured rock masses. Essential parameters and boundary conditions were established, followed by conducting numerical simulations. Through the numerical simulation results, the temporal and spatial changes of coupling effects among seepage field, stress field, and temperature field in fractured rock mass were analyzed. We investigated the impact of water injection temperature, injection-production pressure difference, injection flow rate, and initial reservoir temperature on the heat transfer process. The findings indicate that raising the water injection temperature and injection-production pressure difference can enhance the reservoir’s heat recovery capability. However, it may also accelerate thermal breakthrough and reduce the system’s operational lifespan. The higher injection flow rate can improve the heat recovery efficiency. However, too large injection flow can cause problems in other aspects of the reservoir; increasing reservoir temperature leads to higher production temperatures, which can potentially result in dynamic catastrophes. Therefore, while ensuring the heat recovery efficiency of the system, the operation life of the system can be extended by adjusting the water injection temperature in stages, setting a reasonable injection and production pressure difference, and selecting an appropriate injection flow rate, so as to achieve the purpose of EGS optimization.","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"11 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat Transfer Analysis of Enhanced Geothermal System Based on Heat-Fluid-Structure Coupling Model\",\"authors\":\"Linchao Wang, Xin Liang, Xuyang Shi, Jianyong Han, Yang Chen, Wan Zhang\",\"doi\":\"10.1155/2023/8840352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dry hot rock geothermal resources by virtue of its wide distribution, large reserves, clean and low-carbon, stable, high utilization rate, and other characteristics have been widely used. The enhanced geothermal system (EGS) is the most efficient approach for harnessing and exploiting geothermal energy from hot, arid rock formations. To investigate the impact of varying parameters on heat recovery in EGS operations, we employed the COMSOL numerical simulation software to construct a seepage heat transfer model for fractured rock masses. Essential parameters and boundary conditions were established, followed by conducting numerical simulations. Through the numerical simulation results, the temporal and spatial changes of coupling effects among seepage field, stress field, and temperature field in fractured rock mass were analyzed. We investigated the impact of water injection temperature, injection-production pressure difference, injection flow rate, and initial reservoir temperature on the heat transfer process. The findings indicate that raising the water injection temperature and injection-production pressure difference can enhance the reservoir’s heat recovery capability. However, it may also accelerate thermal breakthrough and reduce the system’s operational lifespan. The higher injection flow rate can improve the heat recovery efficiency. However, too large injection flow can cause problems in other aspects of the reservoir; increasing reservoir temperature leads to higher production temperatures, which can potentially result in dynamic catastrophes. Therefore, while ensuring the heat recovery efficiency of the system, the operation life of the system can be extended by adjusting the water injection temperature in stages, setting a reasonable injection and production pressure difference, and selecting an appropriate injection flow rate, so as to achieve the purpose of EGS optimization.\",\"PeriodicalId\":12512,\"journal\":{\"name\":\"Geofluids\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofluids\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8840352\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofluids","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2023/8840352","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

干热岩地热资源凭借其分布广、储量大、清洁低碳、稳定、利用率高等特点得到了广泛的应用。增强型地热系统(EGS)是利用和开发高温干旱岩层地热能的最有效方法。为了研究不同参数对EGS作业热回收的影响,我们利用COMSOL数值模拟软件建立了裂隙岩体的渗流传热模型。建立了基本参数和边界条件,并进行了数值模拟。通过数值模拟结果,分析了裂隙岩体渗流场、应力场和温度场耦合效应的时空变化规律。研究了注水温度、注采压差、注入流速和储层初始温度对换热过程的影响。研究结果表明,提高注水温度和注采压差可以提高储层的热采能力。然而,它也可能加速热突破,缩短系统的使用寿命。较高的注射流量可以提高热回收效率。然而,过大的注入流量可能会导致储层其他方面的问题;储层温度的升高会导致生产温度的升高,这可能会导致动态灾难。因此,在保证系统热回收效率的同时,通过分阶段调整注水温度,设置合理的注采压差,选择合适的注入流量,可以延长系统的运行寿命,从而达到EGS优化的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heat Transfer Analysis of Enhanced Geothermal System Based on Heat-Fluid-Structure Coupling Model
Dry hot rock geothermal resources by virtue of its wide distribution, large reserves, clean and low-carbon, stable, high utilization rate, and other characteristics have been widely used. The enhanced geothermal system (EGS) is the most efficient approach for harnessing and exploiting geothermal energy from hot, arid rock formations. To investigate the impact of varying parameters on heat recovery in EGS operations, we employed the COMSOL numerical simulation software to construct a seepage heat transfer model for fractured rock masses. Essential parameters and boundary conditions were established, followed by conducting numerical simulations. Through the numerical simulation results, the temporal and spatial changes of coupling effects among seepage field, stress field, and temperature field in fractured rock mass were analyzed. We investigated the impact of water injection temperature, injection-production pressure difference, injection flow rate, and initial reservoir temperature on the heat transfer process. The findings indicate that raising the water injection temperature and injection-production pressure difference can enhance the reservoir’s heat recovery capability. However, it may also accelerate thermal breakthrough and reduce the system’s operational lifespan. The higher injection flow rate can improve the heat recovery efficiency. However, too large injection flow can cause problems in other aspects of the reservoir; increasing reservoir temperature leads to higher production temperatures, which can potentially result in dynamic catastrophes. Therefore, while ensuring the heat recovery efficiency of the system, the operation life of the system can be extended by adjusting the water injection temperature in stages, setting a reasonable injection and production pressure difference, and selecting an appropriate injection flow rate, so as to achieve the purpose of EGS optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geofluids
Geofluids 地学-地球化学与地球物理
CiteScore
2.80
自引率
17.60%
发文量
835
期刊介绍: Geofluids is a peer-reviewed, Open Access journal that provides a forum for original research and reviews relating to the role of fluids in mineralogical, chemical, and structural evolution of the Earth’s crust. Its explicit aim is to disseminate ideas across the range of sub-disciplines in which Geofluids research is carried out. To this end, authors are encouraged to stress the transdisciplinary relevance and international ramifications of their research. Authors are also encouraged to make their work as accessible as possible to readers from other sub-disciplines. Geofluids emphasizes chemical, microbial, and physical aspects of subsurface fluids throughout the Earth’s crust. Geofluids spans studies of groundwater, terrestrial or submarine geothermal fluids, basinal brines, petroleum, metamorphic waters or magmatic fluids.
期刊最新文献
Anomalous Characteristics of Surface Geochemistry Above the Basin Geothermal System: A Case Study of the Shiba Basin in Huizhou, China Analysis of Stress Variation Characteristics of Jiangling Depression, Hubei, China, Based on Jingzhou Well Water Level and GNSS Data Experimental Simulation of Proppant Migration for Slick Water With Variable Viscosity During Fracturing Application of AVO Characteristics Analysis and Seismic Dispersion AVO Inversion to the Carbonate Hydrocarbon Reservoirs in Region Y of the Tarim Basin, China Comparative Analysis of Shale Gas Enrichment and High Yield Geological Conditions of Wufeng–Longmaxi Formation and Qiongzhusi Formation in Southern Sichuan Basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1