Ana Usié, Octávio Serra, Pedro M. Barros, Pedro Barbosa, Célia Leão, Tiago Capote, Tânia Almeida, Leandra Rodrigues, Isabel Carrasquinho, Joana B. Guimarães, Diogo Mendoça, Filomena Nóbrega, Conceição Egas, Inês Chaves, Isabel A. Abreu, Nelson J. M. Saibo, Liliana Marum, Maria Carolina Varela, José Matos, Fernanda Simões, Célia M. Miguel, M. Margarida Oliveira, Cândido P. Ricardo, Sónia Gonçalves, António Marcos Ramos
{"title":"栎亚种改良的参考基因组和第一细胞器基因组","authors":"Ana Usié, Octávio Serra, Pedro M. Barros, Pedro Barbosa, Célia Leão, Tiago Capote, Tânia Almeida, Leandra Rodrigues, Isabel Carrasquinho, Joana B. Guimarães, Diogo Mendoça, Filomena Nóbrega, Conceição Egas, Inês Chaves, Isabel A. Abreu, Nelson J. M. Saibo, Liliana Marum, Maria Carolina Varela, José Matos, Fernanda Simões, Célia M. Miguel, M. Margarida Oliveira, Cândido P. Ricardo, Sónia Gonçalves, António Marcos Ramos","doi":"10.1007/s11295-023-01624-8","DOIUrl":null,"url":null,"abstract":"<p>Cork oak (<i>Quercus suber</i> L.) is an ecologically and economically important evergreen tree species native to the Mediterranean region and widespread in southwest Europe and northwest Africa. An improved genome assembly of cork oak using a combination of Illumina and PacBio sequencing is presented in this study. The assembled genome contains 2351 scaffolds longer than 1000 bp, accounting for 765.7 Mbp of genome size, L90 of 755, and a N50 of 1.0 Mbp, with 40,131 annotated genes. The repetitive sequences constitute 53.6% of the genome. The genome sequences of chloroplast and mitochondrion were determined for the first time, with a genome size of 161,179 bp and 531,858 bp, respectively. Phylogenetic analysis based on complete chloroplast genome sequence showed that <i>Q. suber</i> is closely related to <i>Quercus variabilis</i>, two cork-producing species with commercial use. All data generated are available through the public databases, being ready to be used without restrictions. This study provides an improved nuclear genome assembly together with the organelle genomes of cork oak. These resources will be useful for further breeding strategies and conservation programs and for comparative genomic studies in oak species.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved reference genome and first organelle genomes of Quercus suber\",\"authors\":\"Ana Usié, Octávio Serra, Pedro M. Barros, Pedro Barbosa, Célia Leão, Tiago Capote, Tânia Almeida, Leandra Rodrigues, Isabel Carrasquinho, Joana B. Guimarães, Diogo Mendoça, Filomena Nóbrega, Conceição Egas, Inês Chaves, Isabel A. Abreu, Nelson J. M. Saibo, Liliana Marum, Maria Carolina Varela, José Matos, Fernanda Simões, Célia M. Miguel, M. Margarida Oliveira, Cândido P. Ricardo, Sónia Gonçalves, António Marcos Ramos\",\"doi\":\"10.1007/s11295-023-01624-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cork oak (<i>Quercus suber</i> L.) is an ecologically and economically important evergreen tree species native to the Mediterranean region and widespread in southwest Europe and northwest Africa. An improved genome assembly of cork oak using a combination of Illumina and PacBio sequencing is presented in this study. The assembled genome contains 2351 scaffolds longer than 1000 bp, accounting for 765.7 Mbp of genome size, L90 of 755, and a N50 of 1.0 Mbp, with 40,131 annotated genes. The repetitive sequences constitute 53.6% of the genome. The genome sequences of chloroplast and mitochondrion were determined for the first time, with a genome size of 161,179 bp and 531,858 bp, respectively. Phylogenetic analysis based on complete chloroplast genome sequence showed that <i>Q. suber</i> is closely related to <i>Quercus variabilis</i>, two cork-producing species with commercial use. All data generated are available through the public databases, being ready to be used without restrictions. This study provides an improved nuclear genome assembly together with the organelle genomes of cork oak. These resources will be useful for further breeding strategies and conservation programs and for comparative genomic studies in oak species.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11295-023-01624-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11295-023-01624-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An improved reference genome and first organelle genomes of Quercus suber
Cork oak (Quercus suber L.) is an ecologically and economically important evergreen tree species native to the Mediterranean region and widespread in southwest Europe and northwest Africa. An improved genome assembly of cork oak using a combination of Illumina and PacBio sequencing is presented in this study. The assembled genome contains 2351 scaffolds longer than 1000 bp, accounting for 765.7 Mbp of genome size, L90 of 755, and a N50 of 1.0 Mbp, with 40,131 annotated genes. The repetitive sequences constitute 53.6% of the genome. The genome sequences of chloroplast and mitochondrion were determined for the first time, with a genome size of 161,179 bp and 531,858 bp, respectively. Phylogenetic analysis based on complete chloroplast genome sequence showed that Q. suber is closely related to Quercus variabilis, two cork-producing species with commercial use. All data generated are available through the public databases, being ready to be used without restrictions. This study provides an improved nuclear genome assembly together with the organelle genomes of cork oak. These resources will be useful for further breeding strategies and conservation programs and for comparative genomic studies in oak species.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.