{"title":"使用元启发式算法开发集成烛台技术分析模型","authors":"Armin Mahmoodi, Leila Hashemi, Milad Jasemi","doi":"10.1108/emjb-02-2022-0034","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>In this study, the central objective is to foresee stock market signals with the use of a proper structure to achieve the highest accuracy possible. For this purpose, three hybrid models have been developed for the stock markets which are a combination of support vector machine (SVM) with meta-heuristic algorithms of particle swarm optimization (PSO), imperialist competition algorithm (ICA) and genetic algorithm (GA).All the analyses are technical and are based on the Japanese candlestick model.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Further as per the results achieved, the most suitable algorithm is chosen to anticipate sell and buy signals. Moreover, the authors have compared the results of the designed model validations in this study with basic models in three articles conducted in the past years. Therefore, SVM is examined by PSO. It is used as a classification agent to search the problem-solving space precisely and at a faster pace. With regards to the second model, SVM and ICA are tested to stock market timing, in a way that ICA is used as an optimization agent for the SVM parameters. At last, in the third model, SVM and GA are studied, where GA acts as an optimizer and feature selection agent.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>As per the results, it is observed that all new models can predict accurately for only 6 days; however, in comparison with the confusion matrix results, it is observed that the SVM-GA and SVM-ICA models have correctly predicted more sell signals, and the SCM-PSO model has correctly predicted more buy signals. However, SVM-ICA has shown better performance than other models considering executing the implemented models.</p><!--/ Abstract__block -->\n<h3>Research limitations/implications</h3>\n<p>In this study, the data for stock market of the years 2013–2021 were analyzed; the long length of timeframe makes the input data analysis challenging as they must be moderated with respect to the conditions where they have been changed.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>In this study, two methods have been developed in a candlestick model; they are raw-based and signal-based approaches in which the hit rate is determined by the percentage of correct evaluations of the stock market for a 16-day period.</p><!--/ Abstract__block -->","PeriodicalId":46475,"journal":{"name":"EuroMed Journal of Business","volume":"23 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Develop an integrated candlestick technical analysis model using meta-heuristic algorithms\",\"authors\":\"Armin Mahmoodi, Leila Hashemi, Milad Jasemi\",\"doi\":\"10.1108/emjb-02-2022-0034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>In this study, the central objective is to foresee stock market signals with the use of a proper structure to achieve the highest accuracy possible. For this purpose, three hybrid models have been developed for the stock markets which are a combination of support vector machine (SVM) with meta-heuristic algorithms of particle swarm optimization (PSO), imperialist competition algorithm (ICA) and genetic algorithm (GA).All the analyses are technical and are based on the Japanese candlestick model.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>Further as per the results achieved, the most suitable algorithm is chosen to anticipate sell and buy signals. Moreover, the authors have compared the results of the designed model validations in this study with basic models in three articles conducted in the past years. Therefore, SVM is examined by PSO. It is used as a classification agent to search the problem-solving space precisely and at a faster pace. With regards to the second model, SVM and ICA are tested to stock market timing, in a way that ICA is used as an optimization agent for the SVM parameters. At last, in the third model, SVM and GA are studied, where GA acts as an optimizer and feature selection agent.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>As per the results, it is observed that all new models can predict accurately for only 6 days; however, in comparison with the confusion matrix results, it is observed that the SVM-GA and SVM-ICA models have correctly predicted more sell signals, and the SCM-PSO model has correctly predicted more buy signals. However, SVM-ICA has shown better performance than other models considering executing the implemented models.</p><!--/ Abstract__block -->\\n<h3>Research limitations/implications</h3>\\n<p>In this study, the data for stock market of the years 2013–2021 were analyzed; the long length of timeframe makes the input data analysis challenging as they must be moderated with respect to the conditions where they have been changed.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>In this study, two methods have been developed in a candlestick model; they are raw-based and signal-based approaches in which the hit rate is determined by the percentage of correct evaluations of the stock market for a 16-day period.</p><!--/ Abstract__block -->\",\"PeriodicalId\":46475,\"journal\":{\"name\":\"EuroMed Journal of Business\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EuroMed Journal of Business\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/emjb-02-2022-0034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EuroMed Journal of Business","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/emjb-02-2022-0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS","Score":null,"Total":0}
Develop an integrated candlestick technical analysis model using meta-heuristic algorithms
Purpose
In this study, the central objective is to foresee stock market signals with the use of a proper structure to achieve the highest accuracy possible. For this purpose, three hybrid models have been developed for the stock markets which are a combination of support vector machine (SVM) with meta-heuristic algorithms of particle swarm optimization (PSO), imperialist competition algorithm (ICA) and genetic algorithm (GA).All the analyses are technical and are based on the Japanese candlestick model.
Design/methodology/approach
Further as per the results achieved, the most suitable algorithm is chosen to anticipate sell and buy signals. Moreover, the authors have compared the results of the designed model validations in this study with basic models in three articles conducted in the past years. Therefore, SVM is examined by PSO. It is used as a classification agent to search the problem-solving space precisely and at a faster pace. With regards to the second model, SVM and ICA are tested to stock market timing, in a way that ICA is used as an optimization agent for the SVM parameters. At last, in the third model, SVM and GA are studied, where GA acts as an optimizer and feature selection agent.
Findings
As per the results, it is observed that all new models can predict accurately for only 6 days; however, in comparison with the confusion matrix results, it is observed that the SVM-GA and SVM-ICA models have correctly predicted more sell signals, and the SCM-PSO model has correctly predicted more buy signals. However, SVM-ICA has shown better performance than other models considering executing the implemented models.
Research limitations/implications
In this study, the data for stock market of the years 2013–2021 were analyzed; the long length of timeframe makes the input data analysis challenging as they must be moderated with respect to the conditions where they have been changed.
Originality/value
In this study, two methods have been developed in a candlestick model; they are raw-based and signal-based approaches in which the hit rate is determined by the percentage of correct evaluations of the stock market for a 16-day period.
期刊介绍:
The EuroMed Journal of Business (EMJB) is the premier publication facilitating dialogue among researchers from Europe and the Mediterranean. It plays a vital role in generating and disseminating knowledge about various business environments and trends in this region. By offering an up-to-date overview of emerging business practices in specific countries, EMJB serves as a valuable resource for its readers.
As the official journal of the EuroMed Academy of Business, EMJB is committed to reflecting the economic growth seen in the European-Mediterranean region. It aims to be a focused and targeted business journal, highlighting environmental opportunities, threats, and marketplace developments in the area. Through its efforts, EMJB promotes collaboration and open dialogue among diverse research cultures and practices.
EMJB serves as a platform for debating and disseminating research findings, new research areas and techniques, conceptual developments, and practical applications across various business segments. It seeks to provide a forum for discussing new ideas in business, including theory, practice, and the issues that arise within the field.