为什么要变换Y?质量为零的转换回归的缺陷*

IF 1.5 3区 经济学 Q2 ECONOMICS Oxford Bulletin of Economics and Statistics Pub Date : 2023-11-14 DOI:10.1111/obes.12583
John Mullahy, Edward C. Norton
{"title":"为什么要变换Y?质量为零的转换回归的缺陷*","authors":"John Mullahy,&nbsp;Edward C. Norton","doi":"10.1111/obes.12583","DOIUrl":null,"url":null,"abstract":"<p>Applied economists often transform a dependent variable that is non-negative and skewed with the natural log transformation, the inverse hyperbolic sine transformation, or power function. We show that these transformations separate the zeros from the positives such that the estimated parameters are related to those from a scaled linear probability model. The retransformed marginal effects and elasticities are sensitive to changes in a shape parameter, ranging in magnitude between those of an untransformed least squares regression and those of a scaled linear probability model. Instead of transforming the dependent variable with non-negative outcomes that includes zeros, we recommend using a non-transformed dependent variable, such as a two-part model, untransformed linear regression, or Poisson.</p>","PeriodicalId":54654,"journal":{"name":"Oxford Bulletin of Economics and Statistics","volume":"86 2","pages":"417-447"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/obes.12583","citationCount":"0","resultStr":"{\"title\":\"Why Transform Y? The Pitfalls of Transformed Regressions with a Mass at Zero*\",\"authors\":\"John Mullahy,&nbsp;Edward C. Norton\",\"doi\":\"10.1111/obes.12583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Applied economists often transform a dependent variable that is non-negative and skewed with the natural log transformation, the inverse hyperbolic sine transformation, or power function. We show that these transformations separate the zeros from the positives such that the estimated parameters are related to those from a scaled linear probability model. The retransformed marginal effects and elasticities are sensitive to changes in a shape parameter, ranging in magnitude between those of an untransformed least squares regression and those of a scaled linear probability model. Instead of transforming the dependent variable with non-negative outcomes that includes zeros, we recommend using a non-transformed dependent variable, such as a two-part model, untransformed linear regression, or Poisson.</p>\",\"PeriodicalId\":54654,\"journal\":{\"name\":\"Oxford Bulletin of Economics and Statistics\",\"volume\":\"86 2\",\"pages\":\"417-447\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/obes.12583\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxford Bulletin of Economics and Statistics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/obes.12583\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford Bulletin of Economics and Statistics","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/obes.12583","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

应用经济学家经常用自然对数变换、双曲正弦反变换或幂函数来变换非负偏的因变量。我们表明,这些变换将零与正分离,使得估计参数与缩放线性概率模型的参数相关。重新转换的边际效应和弹性对形状参数的变化很敏感,其幅度介于未转换的最小二乘回归和缩放线性概率模型之间。我们建议使用未转换的因变量,例如两部分模型、未转换的线性回归或泊松,而不是使用包含零的非负结果来转换因变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Why Transform Y? The Pitfalls of Transformed Regressions with a Mass at Zero*

Applied economists often transform a dependent variable that is non-negative and skewed with the natural log transformation, the inverse hyperbolic sine transformation, or power function. We show that these transformations separate the zeros from the positives such that the estimated parameters are related to those from a scaled linear probability model. The retransformed marginal effects and elasticities are sensitive to changes in a shape parameter, ranging in magnitude between those of an untransformed least squares regression and those of a scaled linear probability model. Instead of transforming the dependent variable with non-negative outcomes that includes zeros, we recommend using a non-transformed dependent variable, such as a two-part model, untransformed linear regression, or Poisson.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oxford Bulletin of Economics and Statistics
Oxford Bulletin of Economics and Statistics 管理科学-统计学与概率论
CiteScore
5.10
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: Whilst the Oxford Bulletin of Economics and Statistics publishes papers in all areas of applied economics, emphasis is placed on the practical importance, theoretical interest and policy-relevance of their substantive results, as well as on the methodology and technical competence of the research. Contributions on the topical issues of economic policy and the testing of currently controversial economic theories are encouraged, as well as more empirical research on both developed and developing countries.
期刊最新文献
Issue Information The Real Effects of Zombie Lending in Europe Factoring in the Micro: A Transaction‐Level Dynamic Factor Approach to the Decomposition of Export Volatility The Growth Effect of State Capacity Revisited Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1