Robin R.P. Callens, Matthias G.R. Faess, David Moens
{"title":"区间分析的多水平拟蒙特卡罗","authors":"Robin R.P. Callens, Matthias G.R. Faess, David Moens","doi":"10.1615/int.j.uncertaintyquantification.2022039245","DOIUrl":null,"url":null,"abstract":"This paper presents a multilevel quasi-Monte Carlo method for interval analysis, as a computationally efficient method for high-dimensional linear models. Interval analysis typically requires a global optimization procedure to calculate the interval bounds on the output side of a computational model. The main issue of such a procedure is that it requires numerous full-scale model evaluations. Even when simplified approaches such as the vertex method are applied, the required number of model evaluations scales combinatorially with the number of input intervals. This increase in required model evaluations is especially problematic for highly detailed numerical models containing thousands or even millions of degrees of freedom. In the context of probabilistic forward uncertainty propagation, multifidelity techniques such as multilevel quasi-Monte Carlo show great potential to reduce the computational cost. However, their translation to an interval context is not straightforward due to the fundamental differences between interval and probabilistic methods. In this work, we introduce a multilevel quasi-Monte Carlo framework. First, the input intervals are transformed to Cauchy random variables. Then, based on these Cauchy random variables, a multilevel sampling is designed. Finally, the corresponding model responses are post-processed to estimate the intervals on the output quantities with high accuracy. Two numerical examples show that the technique is very efficient for a medium to a high number of input intervals. This is in comparison with traditional propagation approaches for interval analysis and with results well within a predefined tolerance.","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"20 3-4 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MULTILEVEL QUASI-MONTE CARLO FOR INTERVAL ANALYSIS\",\"authors\":\"Robin R.P. Callens, Matthias G.R. Faess, David Moens\",\"doi\":\"10.1615/int.j.uncertaintyquantification.2022039245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a multilevel quasi-Monte Carlo method for interval analysis, as a computationally efficient method for high-dimensional linear models. Interval analysis typically requires a global optimization procedure to calculate the interval bounds on the output side of a computational model. The main issue of such a procedure is that it requires numerous full-scale model evaluations. Even when simplified approaches such as the vertex method are applied, the required number of model evaluations scales combinatorially with the number of input intervals. This increase in required model evaluations is especially problematic for highly detailed numerical models containing thousands or even millions of degrees of freedom. In the context of probabilistic forward uncertainty propagation, multifidelity techniques such as multilevel quasi-Monte Carlo show great potential to reduce the computational cost. However, their translation to an interval context is not straightforward due to the fundamental differences between interval and probabilistic methods. In this work, we introduce a multilevel quasi-Monte Carlo framework. First, the input intervals are transformed to Cauchy random variables. Then, based on these Cauchy random variables, a multilevel sampling is designed. Finally, the corresponding model responses are post-processed to estimate the intervals on the output quantities with high accuracy. Two numerical examples show that the technique is very efficient for a medium to a high number of input intervals. This is in comparison with traditional propagation approaches for interval analysis and with results well within a predefined tolerance.\",\"PeriodicalId\":48814,\"journal\":{\"name\":\"International Journal for Uncertainty Quantification\",\"volume\":\"20 3-4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Uncertainty Quantification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/int.j.uncertaintyquantification.2022039245\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2022039245","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
MULTILEVEL QUASI-MONTE CARLO FOR INTERVAL ANALYSIS
This paper presents a multilevel quasi-Monte Carlo method for interval analysis, as a computationally efficient method for high-dimensional linear models. Interval analysis typically requires a global optimization procedure to calculate the interval bounds on the output side of a computational model. The main issue of such a procedure is that it requires numerous full-scale model evaluations. Even when simplified approaches such as the vertex method are applied, the required number of model evaluations scales combinatorially with the number of input intervals. This increase in required model evaluations is especially problematic for highly detailed numerical models containing thousands or even millions of degrees of freedom. In the context of probabilistic forward uncertainty propagation, multifidelity techniques such as multilevel quasi-Monte Carlo show great potential to reduce the computational cost. However, their translation to an interval context is not straightforward due to the fundamental differences between interval and probabilistic methods. In this work, we introduce a multilevel quasi-Monte Carlo framework. First, the input intervals are transformed to Cauchy random variables. Then, based on these Cauchy random variables, a multilevel sampling is designed. Finally, the corresponding model responses are post-processed to estimate the intervals on the output quantities with high accuracy. Two numerical examples show that the technique is very efficient for a medium to a high number of input intervals. This is in comparison with traditional propagation approaches for interval analysis and with results well within a predefined tolerance.
期刊介绍:
The International Journal for Uncertainty Quantification disseminates information of permanent interest in the areas of analysis, modeling, design and control of complex systems in the presence of uncertainty. The journal seeks to emphasize methods that cross stochastic analysis, statistical modeling and scientific computing. Systems of interest are governed by differential equations possibly with multiscale features. Topics of particular interest include representation of uncertainty, propagation of uncertainty across scales, resolving the curse of dimensionality, long-time integration for stochastic PDEs, data-driven approaches for constructing stochastic models, validation, verification and uncertainty quantification for predictive computational science, and visualization of uncertainty in high-dimensional spaces. Bayesian computation and machine learning techniques are also of interest for example in the context of stochastic multiscale systems, for model selection/classification, and decision making. Reports addressing the dynamic coupling of modern experiments and modeling approaches towards predictive science are particularly encouraged. Applications of uncertainty quantification in all areas of physical and biological sciences are appropriate.