Haiwei Chen, Mengwei Zhao, Haotian Xie, Yawen Su, Zhilin Ye, Jianan Ma, Yuefeng Nie, Yunfei Niu, Peng Zhan, Shining Zhu, and Xiaopeng Hu
{"title":"应用高压电场周期性极化薄膜钽酸锂","authors":"Haiwei Chen, Mengwei Zhao, Haotian Xie, Yawen Su, Zhilin Ye, Jianan Ma, Yuefeng Nie, Yunfei Niu, Peng Zhan, Shining Zhu, and Xiaopeng Hu","doi":"10.1364/ome.508043","DOIUrl":null,"url":null,"abstract":"Periodically poled lithium tantalate on insulator (PPLTOI) was successfully fabricated by applying a high-voltage electric field. The shape of the electrode, which determines the electric field distribution, as well as the poling time, and the strength of the electric field, are investigated in detail for the fabrication of periodically poled LTOI. By optimizing the poling parameters, the duty cycle of the inverted domain can be flexibly adjusted as well as be controlled to the optimal value of 50%. Moreover, the fabricated domain structure is uniform, and the standard deviation is less than 4.8%. The study presented in this work will pave the way for applications of LTOI in nonlinear integrated photonics.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"35 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic poling of thin-film lithium tantalate by applying a high-voltage electric field\",\"authors\":\"Haiwei Chen, Mengwei Zhao, Haotian Xie, Yawen Su, Zhilin Ye, Jianan Ma, Yuefeng Nie, Yunfei Niu, Peng Zhan, Shining Zhu, and Xiaopeng Hu\",\"doi\":\"10.1364/ome.508043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Periodically poled lithium tantalate on insulator (PPLTOI) was successfully fabricated by applying a high-voltage electric field. The shape of the electrode, which determines the electric field distribution, as well as the poling time, and the strength of the electric field, are investigated in detail for the fabrication of periodically poled LTOI. By optimizing the poling parameters, the duty cycle of the inverted domain can be flexibly adjusted as well as be controlled to the optimal value of 50%. Moreover, the fabricated domain structure is uniform, and the standard deviation is less than 4.8%. The study presented in this work will pave the way for applications of LTOI in nonlinear integrated photonics.\",\"PeriodicalId\":19548,\"journal\":{\"name\":\"Optical Materials Express\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1364/ome.508043\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.508043","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Periodic poling of thin-film lithium tantalate by applying a high-voltage electric field
Periodically poled lithium tantalate on insulator (PPLTOI) was successfully fabricated by applying a high-voltage electric field. The shape of the electrode, which determines the electric field distribution, as well as the poling time, and the strength of the electric field, are investigated in detail for the fabrication of periodically poled LTOI. By optimizing the poling parameters, the duty cycle of the inverted domain can be flexibly adjusted as well as be controlled to the optimal value of 50%. Moreover, the fabricated domain structure is uniform, and the standard deviation is less than 4.8%. The study presented in this work will pave the way for applications of LTOI in nonlinear integrated photonics.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to:
Artificially engineered optical structures
Biomaterials
Optical detector materials
Optical storage media
Materials for integrated optics
Nonlinear optical materials
Laser materials
Metamaterials
Nanomaterials
Organics and polymers
Soft materials
IR materials
Materials for fiber optics
Hybrid technologies
Materials for quantum photonics
Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.