神经网络期权定价与套期保值:文献综述

IF 0.8 4区 经济学 Q4 BUSINESS, FINANCE Journal of Computational Finance Pub Date : 2020-01-01 DOI:10.21314/jcf.2020.390
Johannes Ruf,Weiguan Wang
{"title":"神经网络期权定价与套期保值:文献综述","authors":"Johannes Ruf,Weiguan Wang","doi":"10.21314/jcf.2020.390","DOIUrl":null,"url":null,"abstract":"Neural networks have been used as a nonparametric method for option pricing and hedging since the early 1990s. Far over a hundred papers have been published on this topic. This note intends to provide a comprehensive review. Papers are compared in terms of input features, output variables, benchmark models, performance measures, data partition methods, and underlying assets. Furthermore, related work and regularisation techniques are discussed.","PeriodicalId":51731,"journal":{"name":"Journal of Computational Finance","volume":"85 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural networks for option pricing and hedging: a literature review\",\"authors\":\"Johannes Ruf,Weiguan Wang\",\"doi\":\"10.21314/jcf.2020.390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks have been used as a nonparametric method for option pricing and hedging since the early 1990s. Far over a hundred papers have been published on this topic. This note intends to provide a comprehensive review. Papers are compared in terms of input features, output variables, benchmark models, performance measures, data partition methods, and underlying assets. Furthermore, related work and regularisation techniques are discussed.\",\"PeriodicalId\":51731,\"journal\":{\"name\":\"Journal of Computational Finance\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.21314/jcf.2020.390\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/jcf.2020.390","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

自20世纪90年代初以来,神经网络已被用作期权定价和套期保值的非参数方法。关于这个话题已经发表了一百多篇论文。本说明旨在提供一个全面的审查。论文在输入特征、输出变量、基准模型、性能度量、数据分区方法和基础资产方面进行比较。此外,还讨论了相关工作和规范化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural networks for option pricing and hedging: a literature review
Neural networks have been used as a nonparametric method for option pricing and hedging since the early 1990s. Far over a hundred papers have been published on this topic. This note intends to provide a comprehensive review. Papers are compared in terms of input features, output variables, benchmark models, performance measures, data partition methods, and underlying assets. Furthermore, related work and regularisation techniques are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
8
期刊介绍: The Journal of Computational Finance is an international peer-reviewed journal dedicated to advancing knowledge in the area of financial mathematics. The journal is focused on the measurement, management and analysis of financial risk, and provides detailed insight into numerical and computational techniques in the pricing, hedging and risk management of financial instruments. The journal welcomes papers dealing with innovative computational techniques in the following areas: Numerical solutions of pricing equations: finite differences, finite elements, and spectral techniques in one and multiple dimensions. Simulation approaches in pricing and risk management: advances in Monte Carlo and quasi-Monte Carlo methodologies; new strategies for market factors simulation. Optimization techniques in hedging and risk management. Fundamental numerical analysis relevant to finance: effect of boundary treatments on accuracy; new discretization of time-series analysis. Developments in free-boundary problems in finance: alternative ways and numerical implications in American option pricing.
期刊最新文献
Genus Aconitum (Ranunculaceae) in the Ukrainian Carpathians and adjacent territories. Toward a unified implementation of regression Monte Carlo algorithms Neural stochastic differential equations for conditional time series generation using the Signature-Wasserstein-1 metric Robust pricing and hedging via neural stochastic differential equations Estimating risks of European option books using neural stochastic differential equation market models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1