基于深度强化学习的数字微流控生物芯片动态自适应

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Design Automation of Electronic Systems Pub Date : 2023-11-23 DOI:10.1145/3633458
Tung-Che Liang, Yi-Chen Chang, Zhanwei Zhong, Yaas Bigdeli, Tsung-Yi Ho, Krishnendu Chakrabarty, Richard Fair
{"title":"基于深度强化学习的数字微流控生物芯片动态自适应","authors":"Tung-Che Liang, Yi-Chen Chang, Zhanwei Zhong, Yaas Bigdeli, Tsung-Yi Ho, Krishnendu Chakrabarty, Richard Fair","doi":"10.1145/3633458","DOIUrl":null,"url":null,"abstract":"<p>We describe an exciting new application domain for deep reinforcement learning (RL): droplet routing on digital microfluidic biochips (DMFBs). A DMFB consists of a two-dimensional electrode array, and it manipulates droplets of liquid to automatically execute biochemical protocols for clinical chemistry. However, a major problem with DMFBs is that electrodes can degrade over time. The transportation of droplet transportation over these degraded electrodes can fail, thereby adversely impacting the integrity of the bioassay outcome. We demonstrated that the fomulation of droplet transportation as an RL problem enables the training of deep neural network policies that can adapt to the underlying health conditions of electrodes and ensure reliable fluidic operations. We describe an RL-based droplet-routing solution that can be used for various sizes of DMFBs. We highlight the reliable execution of an epigenetic bioassay with the RL droplet router on a fabricated DMFB. We show that the use of the RL approach on a simple micro-computer (Raspberry Pi 4) leads to acceptable performance for time-critical bioassays. We present a simulation environment based on the OpenAI Gym Interface for RL-guided droplet routing problems on DMFBs. We present results on our study of electrode degradation using fabricated DMFBs. The study supports the degradation model used in the simulator.</p>","PeriodicalId":50944,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Adaptation Using Deep Reinforcement Learning for Digital Microfluidic Biochips\",\"authors\":\"Tung-Che Liang, Yi-Chen Chang, Zhanwei Zhong, Yaas Bigdeli, Tsung-Yi Ho, Krishnendu Chakrabarty, Richard Fair\",\"doi\":\"10.1145/3633458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We describe an exciting new application domain for deep reinforcement learning (RL): droplet routing on digital microfluidic biochips (DMFBs). A DMFB consists of a two-dimensional electrode array, and it manipulates droplets of liquid to automatically execute biochemical protocols for clinical chemistry. However, a major problem with DMFBs is that electrodes can degrade over time. The transportation of droplet transportation over these degraded electrodes can fail, thereby adversely impacting the integrity of the bioassay outcome. We demonstrated that the fomulation of droplet transportation as an RL problem enables the training of deep neural network policies that can adapt to the underlying health conditions of electrodes and ensure reliable fluidic operations. We describe an RL-based droplet-routing solution that can be used for various sizes of DMFBs. We highlight the reliable execution of an epigenetic bioassay with the RL droplet router on a fabricated DMFB. We show that the use of the RL approach on a simple micro-computer (Raspberry Pi 4) leads to acceptable performance for time-critical bioassays. We present a simulation environment based on the OpenAI Gym Interface for RL-guided droplet routing problems on DMFBs. We present results on our study of electrode degradation using fabricated DMFBs. The study supports the degradation model used in the simulator.</p>\",\"PeriodicalId\":50944,\"journal\":{\"name\":\"ACM Transactions on Design Automation of Electronic Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Design Automation of Electronic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3633458\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3633458","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一个令人兴奋的深度强化学习(RL)的新应用领域:数字微流控生物芯片(dmfb)上的液滴路由。DMFB由一个二维电极阵列组成,它操纵液滴自动执行临床化学的生化协议。然而,dmfb的一个主要问题是电极会随着时间的推移而退化。液滴在这些降解电极上的运输可能会失败,从而对生物测定结果的完整性产生不利影响。我们证明了将液滴运输作为RL问题的制定可以训练深度神经网络策略,该策略可以适应电极的潜在健康状况并确保可靠的流体操作。我们描述了一种基于rl的液滴路由解决方案,可用于各种尺寸的dmfb。我们强调可靠的执行表观遗传生物测定与RL液滴路由器上制造的DMFB。我们表明,在简单的微型计算机(树莓派4)上使用RL方法可以为时间关键型生物测定提供可接受的性能。我们提出了一个基于OpenAI Gym Interface的dmfb上rl引导液滴路由问题的仿真环境。我们介绍了我们的研究结果电极降解使用制造的dmfb。该研究支持了模拟器中使用的退化模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Adaptation Using Deep Reinforcement Learning for Digital Microfluidic Biochips

We describe an exciting new application domain for deep reinforcement learning (RL): droplet routing on digital microfluidic biochips (DMFBs). A DMFB consists of a two-dimensional electrode array, and it manipulates droplets of liquid to automatically execute biochemical protocols for clinical chemistry. However, a major problem with DMFBs is that electrodes can degrade over time. The transportation of droplet transportation over these degraded electrodes can fail, thereby adversely impacting the integrity of the bioassay outcome. We demonstrated that the fomulation of droplet transportation as an RL problem enables the training of deep neural network policies that can adapt to the underlying health conditions of electrodes and ensure reliable fluidic operations. We describe an RL-based droplet-routing solution that can be used for various sizes of DMFBs. We highlight the reliable execution of an epigenetic bioassay with the RL droplet router on a fabricated DMFB. We show that the use of the RL approach on a simple micro-computer (Raspberry Pi 4) leads to acceptable performance for time-critical bioassays. We present a simulation environment based on the OpenAI Gym Interface for RL-guided droplet routing problems on DMFBs. We present results on our study of electrode degradation using fabricated DMFBs. The study supports the degradation model used in the simulator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Design Automation of Electronic Systems
ACM Transactions on Design Automation of Electronic Systems 工程技术-计算机:软件工程
CiteScore
3.20
自引率
7.10%
发文量
105
审稿时长
3 months
期刊介绍: TODAES is a premier ACM journal in design and automation of electronic systems. It publishes innovative work documenting significant research and development advances on the specification, design, analysis, simulation, testing, and evaluation of electronic systems, emphasizing a computer science/engineering orientation. Both theoretical analysis and practical solutions are welcome.
期刊最新文献
Efficient Attacks on Strong PUFs via Covariance and Boolean Modeling PriorMSM: An Efficient Acceleration Architecture for Multi-Scalar Multiplication Multi-Stream Scheduling of Inference Pipelines on Edge Devices - a DRL Approach A Power Optimization Approach for Large-scale RM-TB Dual Logic Circuits Based on an Adaptive Multi-Task Intelligent Algorithm MAB-BMC: A Formal Verification Enhancer by Harnessing Multiple BMC Engines Together
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1