Maitreyi Ashok, Matthew J. Turner, Ronald L. Walsworth, Edlyn V. Levine, Anantha P. Chandrakasan
{"title":"基于量子金刚石显微镜磁场图像的无监督深度学习硬件木马检测","authors":"Maitreyi Ashok, Matthew J. Turner, Ronald L. Walsworth, Edlyn V. Levine, Anantha P. Chandrakasan","doi":"https://dl.acm.org/doi/10.1145/3531010","DOIUrl":null,"url":null,"abstract":"<p>This article presents a method for hardware trojan detection in integrated circuits. Unsupervised deep learning is used to classify wide field-of-view (4 × 4 mm<sup>2</sup>), high spatial resolution magnetic field images taken using a Quantum Diamond Microscope (QDM). QDM magnetic imaging is enhanced using quantum control techniques and improved diamond material to increase magnetic field sensitivity by a factor of 4 and measurement speed by a factor of 16 over previous demonstrations. These upgrades facilitate the first demonstration of QDM magnetic field measurement for hardware trojan detection. Unsupervised convolutional neural networks and clustering are used to infer trojan presence from unlabeled data sets of 600 × 600 pixel magnetic field images without human bias. This analysis is shown to be more accurate than principal component analysis for distinguishing between field programmable gate arrays configured with trojan-free and trojan-inserted logic. This framework is tested on a set of scalable trojans that we developed and measured with the QDM. Scalable and TrustHub trojans are detectable down to a minimum trojan trigger size of 0.5% of the total logic. The trojan detection framework can be used for golden-chip-free detection, since knowledge of the chips’ identities is only used to evaluate detection accuracy.</p>","PeriodicalId":50924,"journal":{"name":"ACM Journal on Emerging Technologies in Computing Systems","volume":"2006 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardware Trojan Detection Using Unsupervised Deep Learning on Quantum Diamond Microscope Magnetic Field Images\",\"authors\":\"Maitreyi Ashok, Matthew J. Turner, Ronald L. Walsworth, Edlyn V. Levine, Anantha P. Chandrakasan\",\"doi\":\"https://dl.acm.org/doi/10.1145/3531010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article presents a method for hardware trojan detection in integrated circuits. Unsupervised deep learning is used to classify wide field-of-view (4 × 4 mm<sup>2</sup>), high spatial resolution magnetic field images taken using a Quantum Diamond Microscope (QDM). QDM magnetic imaging is enhanced using quantum control techniques and improved diamond material to increase magnetic field sensitivity by a factor of 4 and measurement speed by a factor of 16 over previous demonstrations. These upgrades facilitate the first demonstration of QDM magnetic field measurement for hardware trojan detection. Unsupervised convolutional neural networks and clustering are used to infer trojan presence from unlabeled data sets of 600 × 600 pixel magnetic field images without human bias. This analysis is shown to be more accurate than principal component analysis for distinguishing between field programmable gate arrays configured with trojan-free and trojan-inserted logic. This framework is tested on a set of scalable trojans that we developed and measured with the QDM. Scalable and TrustHub trojans are detectable down to a minimum trojan trigger size of 0.5% of the total logic. The trojan detection framework can be used for golden-chip-free detection, since knowledge of the chips’ identities is only used to evaluate detection accuracy.</p>\",\"PeriodicalId\":50924,\"journal\":{\"name\":\"ACM Journal on Emerging Technologies in Computing Systems\",\"volume\":\"2006 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Journal on Emerging Technologies in Computing Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3531010\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Emerging Technologies in Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3531010","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Hardware Trojan Detection Using Unsupervised Deep Learning on Quantum Diamond Microscope Magnetic Field Images
This article presents a method for hardware trojan detection in integrated circuits. Unsupervised deep learning is used to classify wide field-of-view (4 × 4 mm2), high spatial resolution magnetic field images taken using a Quantum Diamond Microscope (QDM). QDM magnetic imaging is enhanced using quantum control techniques and improved diamond material to increase magnetic field sensitivity by a factor of 4 and measurement speed by a factor of 16 over previous demonstrations. These upgrades facilitate the first demonstration of QDM magnetic field measurement for hardware trojan detection. Unsupervised convolutional neural networks and clustering are used to infer trojan presence from unlabeled data sets of 600 × 600 pixel magnetic field images without human bias. This analysis is shown to be more accurate than principal component analysis for distinguishing between field programmable gate arrays configured with trojan-free and trojan-inserted logic. This framework is tested on a set of scalable trojans that we developed and measured with the QDM. Scalable and TrustHub trojans are detectable down to a minimum trojan trigger size of 0.5% of the total logic. The trojan detection framework can be used for golden-chip-free detection, since knowledge of the chips’ identities is only used to evaluate detection accuracy.
期刊介绍:
The Journal of Emerging Technologies in Computing Systems invites submissions of original technical papers describing research and development in emerging technologies in computing systems. Major economic and technical challenges are expected to impede the continued scaling of semiconductor devices. This has resulted in the search for alternate mechanical, biological/biochemical, nanoscale electronic, asynchronous and quantum computing and sensor technologies. As the underlying nanotechnologies continue to evolve in the labs of chemists, physicists, and biologists, it has become imperative for computer scientists and engineers to translate the potential of the basic building blocks (analogous to the transistor) emerging from these labs into information systems. Their design will face multiple challenges ranging from the inherent (un)reliability due to the self-assembly nature of the fabrication processes for nanotechnologies, from the complexity due to the sheer volume of nanodevices that will have to be integrated for complex functionality, and from the need to integrate these new nanotechnologies with silicon devices in the same system.
The journal provides comprehensive coverage of innovative work in the specification, design analysis, simulation, verification, testing, and evaluation of computing systems constructed out of emerging technologies and advanced semiconductors