{"title":"循环脉冲神经网络的收缩阵列加速体系结构","authors":"Jeong-Jun Lee, Wenrui Zhang, Yuan Xie, Peng Li","doi":"https://dl.acm.org/doi/10.1145/3510854","DOIUrl":null,"url":null,"abstract":"<p>Spiking neural networks (SNNs) are brain-inspired event-driven models of computation with promising ultra-low energy dissipation. Rich network dynamics emergent in recurrent spiking neural networks (R-SNNs) can form temporally based memory, offering great potential in processing complex spatiotemporal data. However, recurrence in network connectivity produces tightly coupled data dependency in both space and time, rendering hardware acceleration of R-SNNs challenging. We present the first work to exploit spatiotemporal parallelisms to accelerate the R-SNN-based inference on systolic arrays using an architecture called SaARSP. We decouple the processing of feedforward synaptic connections from that of recurrent connections to allow for the exploitation of parallelisms across multiple time points. We propose a novel time window size optimization (TWSO) technique, to further explore the temporal granularity of the proposed decoupling in terms of optimal time window size and reconfiguration of the systolic array considering layer-dependent connectivity to boost performance. Stationary dataflow and time window size are jointly optimized to trade off between weight data reuse and movements of partial sums, the two bottlenecks in latency and energy dissipation of the accelerator. The proposed systolic-array architecture offers a unifying solution to an acceleration of both feedforward and recurrent SNNs, and delivers 4,000X EDP improvement on average for different R-SNN benchmarks over a conventional baseline.</p>","PeriodicalId":50924,"journal":{"name":"ACM Journal on Emerging Technologies in Computing Systems","volume":"19 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SaARSP: An Architecture for Systolic-Array Acceleration of Recurrent Spiking Neural Networks\",\"authors\":\"Jeong-Jun Lee, Wenrui Zhang, Yuan Xie, Peng Li\",\"doi\":\"https://dl.acm.org/doi/10.1145/3510854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spiking neural networks (SNNs) are brain-inspired event-driven models of computation with promising ultra-low energy dissipation. Rich network dynamics emergent in recurrent spiking neural networks (R-SNNs) can form temporally based memory, offering great potential in processing complex spatiotemporal data. However, recurrence in network connectivity produces tightly coupled data dependency in both space and time, rendering hardware acceleration of R-SNNs challenging. We present the first work to exploit spatiotemporal parallelisms to accelerate the R-SNN-based inference on systolic arrays using an architecture called SaARSP. We decouple the processing of feedforward synaptic connections from that of recurrent connections to allow for the exploitation of parallelisms across multiple time points. We propose a novel time window size optimization (TWSO) technique, to further explore the temporal granularity of the proposed decoupling in terms of optimal time window size and reconfiguration of the systolic array considering layer-dependent connectivity to boost performance. Stationary dataflow and time window size are jointly optimized to trade off between weight data reuse and movements of partial sums, the two bottlenecks in latency and energy dissipation of the accelerator. The proposed systolic-array architecture offers a unifying solution to an acceleration of both feedforward and recurrent SNNs, and delivers 4,000X EDP improvement on average for different R-SNN benchmarks over a conventional baseline.</p>\",\"PeriodicalId\":50924,\"journal\":{\"name\":\"ACM Journal on Emerging Technologies in Computing Systems\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Journal on Emerging Technologies in Computing Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3510854\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Emerging Technologies in Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3510854","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
SaARSP: An Architecture for Systolic-Array Acceleration of Recurrent Spiking Neural Networks
Spiking neural networks (SNNs) are brain-inspired event-driven models of computation with promising ultra-low energy dissipation. Rich network dynamics emergent in recurrent spiking neural networks (R-SNNs) can form temporally based memory, offering great potential in processing complex spatiotemporal data. However, recurrence in network connectivity produces tightly coupled data dependency in both space and time, rendering hardware acceleration of R-SNNs challenging. We present the first work to exploit spatiotemporal parallelisms to accelerate the R-SNN-based inference on systolic arrays using an architecture called SaARSP. We decouple the processing of feedforward synaptic connections from that of recurrent connections to allow for the exploitation of parallelisms across multiple time points. We propose a novel time window size optimization (TWSO) technique, to further explore the temporal granularity of the proposed decoupling in terms of optimal time window size and reconfiguration of the systolic array considering layer-dependent connectivity to boost performance. Stationary dataflow and time window size are jointly optimized to trade off between weight data reuse and movements of partial sums, the two bottlenecks in latency and energy dissipation of the accelerator. The proposed systolic-array architecture offers a unifying solution to an acceleration of both feedforward and recurrent SNNs, and delivers 4,000X EDP improvement on average for different R-SNN benchmarks over a conventional baseline.
期刊介绍:
The Journal of Emerging Technologies in Computing Systems invites submissions of original technical papers describing research and development in emerging technologies in computing systems. Major economic and technical challenges are expected to impede the continued scaling of semiconductor devices. This has resulted in the search for alternate mechanical, biological/biochemical, nanoscale electronic, asynchronous and quantum computing and sensor technologies. As the underlying nanotechnologies continue to evolve in the labs of chemists, physicists, and biologists, it has become imperative for computer scientists and engineers to translate the potential of the basic building blocks (analogous to the transistor) emerging from these labs into information systems. Their design will face multiple challenges ranging from the inherent (un)reliability due to the self-assembly nature of the fabrication processes for nanotechnologies, from the complexity due to the sheer volume of nanodevices that will have to be integrated for complex functionality, and from the need to integrate these new nanotechnologies with silicon devices in the same system.
The journal provides comprehensive coverage of innovative work in the specification, design analysis, simulation, verification, testing, and evaluation of computing systems constructed out of emerging technologies and advanced semiconductors