{"title":"利用Euler-Poisson-Darboux方程加速八卦算法","authors":"Raphaël Berthier, Mufan (Bill) Li","doi":"10.1093/imamat/hxac029","DOIUrl":null,"url":null,"abstract":"Gossip algorithms and their accelerated versions have been studied exclusively in discrete time on graphs. In this work, we take a different approach, and consider the scaling limit of gossip algorithms in both large graphs and large number of iterations. These limits lead to well-known partial differential equations (PDEs) with insightful properties. On lattices, we prove that the non-accelerated gossip algorithm of (??) converges to the heat equation, and the accelerated Jacobi polynomial iteration of (??) converges to the Euler–Poisson–Darboux (EPD) equation — a damped wave equation. Remarkably, with appropriate parameters, the fundamental solution of the EPD equation has the ideal gossip behaviour: a uniform density over an ellipsoid, whose radius increases at a rate proportional to $t$ — the fastest possible rate for locally communicating gossip algorithms. This is in contrast with the heat equation where the density spreads on a typical scale of $\\sqrt {t}$. Additionally, we provide simulations demonstrating that the gossip algorithms are accurately approximated by their limiting PDEs.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acceleration of Gossip Algorithms through the Euler–Poisson–Darboux Equation\",\"authors\":\"Raphaël Berthier, Mufan (Bill) Li\",\"doi\":\"10.1093/imamat/hxac029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gossip algorithms and their accelerated versions have been studied exclusively in discrete time on graphs. In this work, we take a different approach, and consider the scaling limit of gossip algorithms in both large graphs and large number of iterations. These limits lead to well-known partial differential equations (PDEs) with insightful properties. On lattices, we prove that the non-accelerated gossip algorithm of (??) converges to the heat equation, and the accelerated Jacobi polynomial iteration of (??) converges to the Euler–Poisson–Darboux (EPD) equation — a damped wave equation. Remarkably, with appropriate parameters, the fundamental solution of the EPD equation has the ideal gossip behaviour: a uniform density over an ellipsoid, whose radius increases at a rate proportional to $t$ — the fastest possible rate for locally communicating gossip algorithms. This is in contrast with the heat equation where the density spreads on a typical scale of $\\\\sqrt {t}$. Additionally, we provide simulations demonstrating that the gossip algorithms are accurately approximated by their limiting PDEs.\",\"PeriodicalId\":56297,\"journal\":{\"name\":\"IMA Journal of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imamat/hxac029\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imamat/hxac029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Acceleration of Gossip Algorithms through the Euler–Poisson–Darboux Equation
Gossip algorithms and their accelerated versions have been studied exclusively in discrete time on graphs. In this work, we take a different approach, and consider the scaling limit of gossip algorithms in both large graphs and large number of iterations. These limits lead to well-known partial differential equations (PDEs) with insightful properties. On lattices, we prove that the non-accelerated gossip algorithm of (??) converges to the heat equation, and the accelerated Jacobi polynomial iteration of (??) converges to the Euler–Poisson–Darboux (EPD) equation — a damped wave equation. Remarkably, with appropriate parameters, the fundamental solution of the EPD equation has the ideal gossip behaviour: a uniform density over an ellipsoid, whose radius increases at a rate proportional to $t$ — the fastest possible rate for locally communicating gossip algorithms. This is in contrast with the heat equation where the density spreads on a typical scale of $\sqrt {t}$. Additionally, we provide simulations demonstrating that the gossip algorithms are accurately approximated by their limiting PDEs.
期刊介绍:
The IMA Journal of Applied Mathematics is a direct successor of the Journal of the Institute of Mathematics and its Applications which was started in 1965. It is an interdisciplinary journal that publishes research on mathematics arising in the physical sciences and engineering as well as suitable articles in the life sciences, social sciences, and finance. Submissions should address interesting and challenging mathematical problems arising in applications. A good balance between the development of the application(s) and the analysis is expected. Papers that either use established methods to address solved problems or that present analysis in the absence of applications will not be considered.
The journal welcomes submissions in many research areas. Examples are: continuum mechanics materials science and elasticity, including boundary layer theory, combustion, complex flows and soft matter, electrohydrodynamics and magnetohydrodynamics, geophysical flows, granular flows, interfacial and free surface flows, vortex dynamics; elasticity theory; linear and nonlinear wave propagation, nonlinear optics and photonics; inverse problems; applied dynamical systems and nonlinear systems; mathematical physics; stochastic differential equations and stochastic dynamics; network science; industrial applications.