{"title":"浅层对流对2020年7月4日强降水局域化的贡献","authors":"Mikio Nakanishi","doi":"10.2151/sola.2024-001","DOIUrl":null,"url":null,"abstract":"</p><p>On 4 July 2020, a quasi-stationary band-shaped area of heavy precipitation occurred near the center of Kyushu, Japan. The contribution of shallow convection to the localization of the precipitation area is examined using the Weather Research and Forecasting model. Two turbulent transport schemes, the Yonsei University scheme and the Mellor–Yamada–Nakanishi–Niino (MYNN) scheme, are selected. Simulations are performed for a 5-km horizontal resolution domain (SIM1) and a 1-km horizontal resolution domain nested within the 5-km resolution domain (SIM2). The results show that SIM1 predicts a more northerly bias than a radar/raingauge-analyzed precipitation area but provides a relatively small bias for the MYNN scheme, and SIM2 predicts the analyzed precipitation area reasonably well for both schemes. They also suggest that the improvement in SIM2s is due to the transition from shallow to deep convection upwind of the southwesterly wind, and the MYNN scheme with a partial condensation scheme in SIM1 reasonably simulates the growth of shallow convection by parameterizing the buoyancy production of turbulence associated with cloud formation. It is expected that the accurate prediction of shallow convection can improve the reproduction of the location of heavy precipitation areas.</p>\n<p></p>","PeriodicalId":49501,"journal":{"name":"Sola","volume":"53 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contribution of shallow convection to the localization of a band shaped area of heavy precipitation on 4 July 2020\",\"authors\":\"Mikio Nakanishi\",\"doi\":\"10.2151/sola.2024-001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>On 4 July 2020, a quasi-stationary band-shaped area of heavy precipitation occurred near the center of Kyushu, Japan. The contribution of shallow convection to the localization of the precipitation area is examined using the Weather Research and Forecasting model. Two turbulent transport schemes, the Yonsei University scheme and the Mellor–Yamada–Nakanishi–Niino (MYNN) scheme, are selected. Simulations are performed for a 5-km horizontal resolution domain (SIM1) and a 1-km horizontal resolution domain nested within the 5-km resolution domain (SIM2). The results show that SIM1 predicts a more northerly bias than a radar/raingauge-analyzed precipitation area but provides a relatively small bias for the MYNN scheme, and SIM2 predicts the analyzed precipitation area reasonably well for both schemes. They also suggest that the improvement in SIM2s is due to the transition from shallow to deep convection upwind of the southwesterly wind, and the MYNN scheme with a partial condensation scheme in SIM1 reasonably simulates the growth of shallow convection by parameterizing the buoyancy production of turbulence associated with cloud formation. It is expected that the accurate prediction of shallow convection can improve the reproduction of the location of heavy precipitation areas.</p>\\n<p></p>\",\"PeriodicalId\":49501,\"journal\":{\"name\":\"Sola\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sola\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2151/sola.2024-001\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sola","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2151/sola.2024-001","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Contribution of shallow convection to the localization of a band shaped area of heavy precipitation on 4 July 2020
On 4 July 2020, a quasi-stationary band-shaped area of heavy precipitation occurred near the center of Kyushu, Japan. The contribution of shallow convection to the localization of the precipitation area is examined using the Weather Research and Forecasting model. Two turbulent transport schemes, the Yonsei University scheme and the Mellor–Yamada–Nakanishi–Niino (MYNN) scheme, are selected. Simulations are performed for a 5-km horizontal resolution domain (SIM1) and a 1-km horizontal resolution domain nested within the 5-km resolution domain (SIM2). The results show that SIM1 predicts a more northerly bias than a radar/raingauge-analyzed precipitation area but provides a relatively small bias for the MYNN scheme, and SIM2 predicts the analyzed precipitation area reasonably well for both schemes. They also suggest that the improvement in SIM2s is due to the transition from shallow to deep convection upwind of the southwesterly wind, and the MYNN scheme with a partial condensation scheme in SIM1 reasonably simulates the growth of shallow convection by parameterizing the buoyancy production of turbulence associated with cloud formation. It is expected that the accurate prediction of shallow convection can improve the reproduction of the location of heavy precipitation areas.
期刊介绍:
SOLA (Scientific Online Letters on the Atmosphere) is a peer-reviewed, Open Access, online-only journal. It publishes scientific discoveries and advances in understanding in meteorology, climatology, the atmospheric sciences and related interdisciplinary areas. SOLA focuses on presenting new and scientifically rigorous observations, experiments, data analyses, numerical modeling, data assimilation, and technical developments as quickly as possible. It achieves this via rapid peer review and publication of research letters, published as Regular Articles.
Published and supported by the Meteorological Society of Japan, the journal follows strong research and publication ethics principles. Most manuscripts receive a first decision within one month and a decision upon resubmission within a further month. Accepted articles are then quickly published on the journal’s website, where they are easily accessible to our broad audience.