Estefania G. Polli, Travis W. Gannon, Mathieu LeCompte, Ronald R. Rogers, Daniel D. Beran
{"title":"大豆、棉花和烟草对土壤中2,4- d和麦草畏制剂挥发性的响应","authors":"Estefania G. Polli, Travis W. Gannon, Mathieu LeCompte, Ronald R. Rogers, Daniel D. Beran","doi":"10.1017/wet.2023.86","DOIUrl":null,"url":null,"abstract":"2,4-D and dicamba are postemergence herbicides widely used to control broadleaf weed species in crop and non-crop areas in the United States. Currently, there are multiple formulations of 2,4-D and dicamba available in the market. Even though the active ingredient is the same, the chemical form may vary by formulation, which can influence the volatility potential of these herbicides. Therefore, the objective of this study was to evaluate the response of soybean, cotton, and tobacco plants exposed to vapor of 2,4-D and dicamba formulations alone or mixed in humidomes for 24 h. Humidome studies were conducted in an open pavilion at the Lake Wheeler Turfgrass Field Lab of the North Carolina State University in Raleigh, NC. Dicamba and mixture treatments injured and affected height of soybean. Injury varied from 55% to 70%, and average plant height was 8.8 cm lower when compared to the untreated control. 2,4-D treatments caused the lowest injury in soybean (≤ 21%), and differences among formulations were identified (dimethylamine > choline > dimethylamine-monomethylamine). However, soybean height was not affected by 2,4-D treatments. No differences between herbicide treatments were observed for cotton. The highest injury in tobacco was caused by dicamba dimethylamine (23.3%). Overall, the effect of 2,4-D and dicamba vapor was species-specific and formulation-dependent. Additionally, weather conditions in the humidomes possibly played a major role on the outcome of this study.","PeriodicalId":23710,"journal":{"name":"Weed Technology","volume":"2 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response of Soybean, Cotton, and Tobacco to Volatility of 2,4-D and Dicamba Formulations in Humidome\",\"authors\":\"Estefania G. Polli, Travis W. Gannon, Mathieu LeCompte, Ronald R. Rogers, Daniel D. Beran\",\"doi\":\"10.1017/wet.2023.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2,4-D and dicamba are postemergence herbicides widely used to control broadleaf weed species in crop and non-crop areas in the United States. Currently, there are multiple formulations of 2,4-D and dicamba available in the market. Even though the active ingredient is the same, the chemical form may vary by formulation, which can influence the volatility potential of these herbicides. Therefore, the objective of this study was to evaluate the response of soybean, cotton, and tobacco plants exposed to vapor of 2,4-D and dicamba formulations alone or mixed in humidomes for 24 h. Humidome studies were conducted in an open pavilion at the Lake Wheeler Turfgrass Field Lab of the North Carolina State University in Raleigh, NC. Dicamba and mixture treatments injured and affected height of soybean. Injury varied from 55% to 70%, and average plant height was 8.8 cm lower when compared to the untreated control. 2,4-D treatments caused the lowest injury in soybean (≤ 21%), and differences among formulations were identified (dimethylamine > choline > dimethylamine-monomethylamine). However, soybean height was not affected by 2,4-D treatments. No differences between herbicide treatments were observed for cotton. The highest injury in tobacco was caused by dicamba dimethylamine (23.3%). Overall, the effect of 2,4-D and dicamba vapor was species-specific and formulation-dependent. Additionally, weather conditions in the humidomes possibly played a major role on the outcome of this study.\",\"PeriodicalId\":23710,\"journal\":{\"name\":\"Weed Technology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weed Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1017/wet.2023.86\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weed Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/wet.2023.86","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
Response of Soybean, Cotton, and Tobacco to Volatility of 2,4-D and Dicamba Formulations in Humidome
2,4-D and dicamba are postemergence herbicides widely used to control broadleaf weed species in crop and non-crop areas in the United States. Currently, there are multiple formulations of 2,4-D and dicamba available in the market. Even though the active ingredient is the same, the chemical form may vary by formulation, which can influence the volatility potential of these herbicides. Therefore, the objective of this study was to evaluate the response of soybean, cotton, and tobacco plants exposed to vapor of 2,4-D and dicamba formulations alone or mixed in humidomes for 24 h. Humidome studies were conducted in an open pavilion at the Lake Wheeler Turfgrass Field Lab of the North Carolina State University in Raleigh, NC. Dicamba and mixture treatments injured and affected height of soybean. Injury varied from 55% to 70%, and average plant height was 8.8 cm lower when compared to the untreated control. 2,4-D treatments caused the lowest injury in soybean (≤ 21%), and differences among formulations were identified (dimethylamine > choline > dimethylamine-monomethylamine). However, soybean height was not affected by 2,4-D treatments. No differences between herbicide treatments were observed for cotton. The highest injury in tobacco was caused by dicamba dimethylamine (23.3%). Overall, the effect of 2,4-D and dicamba vapor was species-specific and formulation-dependent. Additionally, weather conditions in the humidomes possibly played a major role on the outcome of this study.
期刊介绍:
Weed Technology publishes original research and scholarship in the form of peer-reviewed articles focused on understanding how weeds are managed.
The journal focuses on:
- Applied aspects concerning the management of weeds in agricultural systems
- Herbicides used to manage undesired vegetation, weed biology and control
- Weed/crop management systems
- Reports of new weed problems
-New technologies for weed management and special articles emphasizing technology transfer to improve weed control
-Articles dealing with plant growth regulators and management of undesired plant growth may also be accepted, provided there is clear relevance to weed science technology, e.g., turfgrass or woody plant management along rights-of-way, vegetation management in forest, aquatic, or other non-crop situations.
-Surveys, education, and extension topics related to weeds will also be considered