{"title":"脉冲星射电发射的细节","authors":"Boris Ya. Losovsky","doi":"10.1515/astro-2022-0025","DOIUrl":null,"url":null,"abstract":"A characteristic property of pulsars is pulsed periodic radio emission, which has a high stability of periods. Despite the high stability of the emission periods of pulsars, monitoring the time of arrival of pulses (timing) shows the presence of different types of irregularities: variations of residual deviations, changes in the shape of the pulse, switching on and off of radio emission, and rotation discontinuities. Numerous observations of the radio emission of pulsars indicate that they are caused mainly by processes occurring in the pulsar’s magnetosphere. The special interest causes the observations of a pulsar in the Crab Nebula, performed, in particular, at Jodrell Bank and Pushchino Radio Astronomy Observatory of Lebedev Physical Institute. The connection between the scattering of radio pulses and the measure of the pulsar dispersion, which was established earlier in Pushchino together with Jodrell Bank, has been confirmed. The observed variations in the scattering of radio pulses and their partial correlation with the dispersion measure are explained by the eclipse of the pulsar by plasma clouds with electron density fluctuations significantly exceeding the corresponding fluctuations in the interstellar medium. The question of a possible connection between glitches, dispersion measure variations, radio pulses scattering, and gamma-ray flares is discussed.","PeriodicalId":19514,"journal":{"name":"Open Astronomy","volume":"17 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The specifics of pulsar radio emission\",\"authors\":\"Boris Ya. Losovsky\",\"doi\":\"10.1515/astro-2022-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A characteristic property of pulsars is pulsed periodic radio emission, which has a high stability of periods. Despite the high stability of the emission periods of pulsars, monitoring the time of arrival of pulses (timing) shows the presence of different types of irregularities: variations of residual deviations, changes in the shape of the pulse, switching on and off of radio emission, and rotation discontinuities. Numerous observations of the radio emission of pulsars indicate that they are caused mainly by processes occurring in the pulsar’s magnetosphere. The special interest causes the observations of a pulsar in the Crab Nebula, performed, in particular, at Jodrell Bank and Pushchino Radio Astronomy Observatory of Lebedev Physical Institute. The connection between the scattering of radio pulses and the measure of the pulsar dispersion, which was established earlier in Pushchino together with Jodrell Bank, has been confirmed. The observed variations in the scattering of radio pulses and their partial correlation with the dispersion measure are explained by the eclipse of the pulsar by plasma clouds with electron density fluctuations significantly exceeding the corresponding fluctuations in the interstellar medium. The question of a possible connection between glitches, dispersion measure variations, radio pulses scattering, and gamma-ray flares is discussed.\",\"PeriodicalId\":19514,\"journal\":{\"name\":\"Open Astronomy\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/astro-2022-0025\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/astro-2022-0025","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
A characteristic property of pulsars is pulsed periodic radio emission, which has a high stability of periods. Despite the high stability of the emission periods of pulsars, monitoring the time of arrival of pulses (timing) shows the presence of different types of irregularities: variations of residual deviations, changes in the shape of the pulse, switching on and off of radio emission, and rotation discontinuities. Numerous observations of the radio emission of pulsars indicate that they are caused mainly by processes occurring in the pulsar’s magnetosphere. The special interest causes the observations of a pulsar in the Crab Nebula, performed, in particular, at Jodrell Bank and Pushchino Radio Astronomy Observatory of Lebedev Physical Institute. The connection between the scattering of radio pulses and the measure of the pulsar dispersion, which was established earlier in Pushchino together with Jodrell Bank, has been confirmed. The observed variations in the scattering of radio pulses and their partial correlation with the dispersion measure are explained by the eclipse of the pulsar by plasma clouds with electron density fluctuations significantly exceeding the corresponding fluctuations in the interstellar medium. The question of a possible connection between glitches, dispersion measure variations, radio pulses scattering, and gamma-ray flares is discussed.
Open AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
1.30
自引率
14.30%
发文量
37
审稿时长
16 weeks
期刊介绍:
The journal disseminates research in both observational and theoretical astronomy, astrophysics, solar physics, cosmology, galactic and extragalactic astronomy, high energy particles physics, planetary science, space science and astronomy-related astrobiology, presenting as well the surveys dedicated to astronomical history and education.