能源期货中替代随机波动率模型及其决定因素的绩效比较:COVID-19和俄罗斯-乌克兰冲突特征

IF 1.8 4区 经济学 Q2 BUSINESS, FINANCE Journal of Futures Markets Pub Date : 2023-11-14 DOI:10.1002/fut.22469
Mário Correia Fernandes, José Carlos Dias, João Pedro Vidal Nunes
{"title":"能源期货中替代随机波动率模型及其决定因素的绩效比较:COVID-19和俄罗斯-乌克兰冲突特征","authors":"Mário Correia Fernandes, José Carlos Dias, João Pedro Vidal Nunes","doi":"10.1002/fut.22469","DOIUrl":null,"url":null,"abstract":"This paper studies the volatility dynamics of futures contracts on crude oil, natural gas, and gasoline. An appropriate Bayesian model comparison exercise between seven stochastic volatility (SV) models is estimated using daily prices for our futures contracts between 2005 and 2023. Moreover, to assess the impacts of COVID-19 and the Russia–Ukraine conflict on volatility, we analyze these two subsamples. Overall, we find that: (i) the Bayes factor shows that the SV model with <math altimg=\"urn:x-wiley:02707314:media:fut22469:fut22469-math-0001\" location=\"graphic/fut22469-math-0001.png\">\n<semantics>\n<mrow>\n<mi>t</mi>\n</mrow>\n$t$</annotation>\n</semantics></math>-distributed innovations outperforms the competing models; (ii) crude oil contracts with different expiry dates may require the introduction of leverage effects; (iii) the <math altimg=\"urn:x-wiley:02707314:media:fut22469:fut22469-math-0002\" location=\"graphic/fut22469-math-0002.png\">\n<semantics>\n<mrow>\n<mi>t</mi>\n</mrow>\n$t$</annotation>\n</semantics></math>-distributed innovations remain the appropriate model for the COVID-19 subsample, while jumps are needed in the conflict period; and (iv) other Bayesian criteria more appropriate to short-term predictive ability—such as the conditional and the observed-date deviance information criterion—suggest other rank order to model our futures contracts, despite the agreements for the best models.","PeriodicalId":15863,"journal":{"name":"Journal of Futures Markets","volume":"66 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance comparison of alternative stochastic volatility models and its determinants in energy futures: COVID-19 and Russia–Ukraine conflict features\",\"authors\":\"Mário Correia Fernandes, José Carlos Dias, João Pedro Vidal Nunes\",\"doi\":\"10.1002/fut.22469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the volatility dynamics of futures contracts on crude oil, natural gas, and gasoline. An appropriate Bayesian model comparison exercise between seven stochastic volatility (SV) models is estimated using daily prices for our futures contracts between 2005 and 2023. Moreover, to assess the impacts of COVID-19 and the Russia–Ukraine conflict on volatility, we analyze these two subsamples. Overall, we find that: (i) the Bayes factor shows that the SV model with <math altimg=\\\"urn:x-wiley:02707314:media:fut22469:fut22469-math-0001\\\" location=\\\"graphic/fut22469-math-0001.png\\\">\\n<semantics>\\n<mrow>\\n<mi>t</mi>\\n</mrow>\\n$t$</annotation>\\n</semantics></math>-distributed innovations outperforms the competing models; (ii) crude oil contracts with different expiry dates may require the introduction of leverage effects; (iii) the <math altimg=\\\"urn:x-wiley:02707314:media:fut22469:fut22469-math-0002\\\" location=\\\"graphic/fut22469-math-0002.png\\\">\\n<semantics>\\n<mrow>\\n<mi>t</mi>\\n</mrow>\\n$t$</annotation>\\n</semantics></math>-distributed innovations remain the appropriate model for the COVID-19 subsample, while jumps are needed in the conflict period; and (iv) other Bayesian criteria more appropriate to short-term predictive ability—such as the conditional and the observed-date deviance information criterion—suggest other rank order to model our futures contracts, despite the agreements for the best models.\",\"PeriodicalId\":15863,\"journal\":{\"name\":\"Journal of Futures Markets\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Futures Markets\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1002/fut.22469\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Futures Markets","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1002/fut.22469","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了原油、天然气和汽油期货合约的波动动态。我们利用2005年至2023年期货合约的每日价格,对七个随机波动率(SV)模型进行了适当的贝叶斯模型比较。此外,为了评估COVID-19和俄罗斯-乌克兰冲突对波动性的影响,我们分析了这两个子样本。总体而言,我们发现:(1)贝叶斯因子表明具有t$t$-分布式创新的SV模型优于竞争模型;(二)不同到期日的原油合约可能需要引入杠杆效应的;(iii) t$t$分布式创新仍然是COVID-19子样本的适当模型,而在冲突期间需要跳跃;(iv)其他更适合短期预测能力的贝叶斯标准,如条件偏差信息标准和观测日期偏差信息标准,建议用其他等级顺序来模拟我们的期货合约,尽管有最佳模型的协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance comparison of alternative stochastic volatility models and its determinants in energy futures: COVID-19 and Russia–Ukraine conflict features
This paper studies the volatility dynamics of futures contracts on crude oil, natural gas, and gasoline. An appropriate Bayesian model comparison exercise between seven stochastic volatility (SV) models is estimated using daily prices for our futures contracts between 2005 and 2023. Moreover, to assess the impacts of COVID-19 and the Russia–Ukraine conflict on volatility, we analyze these two subsamples. Overall, we find that: (i) the Bayes factor shows that the SV model with t $t$ -distributed innovations outperforms the competing models; (ii) crude oil contracts with different expiry dates may require the introduction of leverage effects; (iii) the t $t$ -distributed innovations remain the appropriate model for the COVID-19 subsample, while jumps are needed in the conflict period; and (iv) other Bayesian criteria more appropriate to short-term predictive ability—such as the conditional and the observed-date deviance information criterion—suggest other rank order to model our futures contracts, despite the agreements for the best models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Futures Markets
Journal of Futures Markets BUSINESS, FINANCE-
CiteScore
3.70
自引率
15.80%
发文量
91
期刊介绍: The Journal of Futures Markets chronicles the latest developments in financial futures and derivatives. It publishes timely, innovative articles written by leading finance academics and professionals. Coverage ranges from the highly practical to theoretical topics that include futures, derivatives, risk management and control, financial engineering, new financial instruments, hedging strategies, analysis of trading systems, legal, accounting, and regulatory issues, and portfolio optimization. This publication contains the very latest research from the top experts.
期刊最新文献
Journal of Futures Markets: Volume 44, Number 12, December 2024 Journal of Futures Markets: Volume 44, Number 11, November 2024 Frequent Trading and Investment Performance: Evidence From the KOSPI 200 Futures Market Journal of Futures Markets: Volume 44, Number 10, October 2024 Novel Analytic Representations for Caps, Floors, Collars, and Exchange Options on Continuous Flows, Arbitrage-Free Relations, and Optimal Investments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1