{"title":"扩展可靠保证思维处理实时调度","authors":"Cliff B. Jones, Alan Burns","doi":"10.1007/s10703-023-00441-y","DOIUrl":null,"url":null,"abstract":"<p>The reference point for developing any artefact is its specification; to develop software formally, a formal specification is required. For sequential programs, pre and post conditions (together with abstract objects) suffice; rely and guarantee conditions extend the scope of formal development approaches to tackle concurrency. In addition, real-time systems need ways of both requiring progress and relating that progress to some notion of time. This paper extends rely-guarantee ideas to cope with specifications of—and assumptions about—real-time schedulers. Furthermore it shows how the approach helps identify and specify fault-tolerance aspects of such schedulers by systematically challenging the assumptions.</p>","PeriodicalId":12430,"journal":{"name":"Formal Methods in System Design","volume":"13 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extending rely-guarantee thinking to handle real-time scheduling\",\"authors\":\"Cliff B. Jones, Alan Burns\",\"doi\":\"10.1007/s10703-023-00441-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The reference point for developing any artefact is its specification; to develop software formally, a formal specification is required. For sequential programs, pre and post conditions (together with abstract objects) suffice; rely and guarantee conditions extend the scope of formal development approaches to tackle concurrency. In addition, real-time systems need ways of both requiring progress and relating that progress to some notion of time. This paper extends rely-guarantee ideas to cope with specifications of—and assumptions about—real-time schedulers. Furthermore it shows how the approach helps identify and specify fault-tolerance aspects of such schedulers by systematically challenging the assumptions.</p>\",\"PeriodicalId\":12430,\"journal\":{\"name\":\"Formal Methods in System Design\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formal Methods in System Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10703-023-00441-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formal Methods in System Design","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10703-023-00441-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Extending rely-guarantee thinking to handle real-time scheduling
The reference point for developing any artefact is its specification; to develop software formally, a formal specification is required. For sequential programs, pre and post conditions (together with abstract objects) suffice; rely and guarantee conditions extend the scope of formal development approaches to tackle concurrency. In addition, real-time systems need ways of both requiring progress and relating that progress to some notion of time. This paper extends rely-guarantee ideas to cope with specifications of—and assumptions about—real-time schedulers. Furthermore it shows how the approach helps identify and specify fault-tolerance aspects of such schedulers by systematically challenging the assumptions.
期刊介绍:
The focus of this journal is on formal methods for designing, implementing, and validating the correctness of hardware (VLSI) and software systems. The stimulus for starting a journal with this goal came from both academia and industry. In both areas, interest in the use of formal methods has increased rapidly during the past few years. The enormous cost and time required to validate new designs has led to the realization that more powerful techniques must be developed. A number of techniques and tools are currently being devised for improving the reliability, and robustness of complex hardware and software systems. While the boundary between the (sub)components of a system that are cast in hardware, firmware, or software continues to blur, the relevant design disciplines and formal methods are maturing rapidly. Consequently, an important (and useful) collection of commonly applicable formal methods are expected to emerge that will strongly influence future design environments and design methods.