{"title":"分层保护一阶过渡系统","authors":"Christian Müller, Helmut Seidl","doi":"10.1007/s10703-022-00404-9","DOIUrl":null,"url":null,"abstract":"<p>First-order transition systems are a convenient formalism to specify parametric systems such as multi-agent workflows or distributed algorithms. In general, any nontrivial question about such systems is undecidable. Here, we present three subclasses of first-order transition systems where every universal invariant can effectively be decided via fixpoint iteration. These subclasses are defined in terms of syntactical restrictions: negation, stratification and guardedness. While guardedness represents a particular pattern how input predicates control existential quantifiers, stratification limits the information flow between predicates. Guardedness implies that the weakest precondition for every universal invariant is again universal, while the remaining sufficient criteria enforce that either the number of occurring negated literals decreases in every iteration, or the number of required instances of input predicates or the number of first-order variables remains bounded. We argue for each of these three cases that termination of the fixpoint iteration can be guaranteed. We apply these results to identify classes of multi-agent systems, when formalized as first-order transition systems, where noninterference in presence of declassification is decidable for coalitions of attackers of bounded size.</p>","PeriodicalId":12430,"journal":{"name":"Formal Methods in System Design","volume":"4 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stratified guarded first-order transition systems\",\"authors\":\"Christian Müller, Helmut Seidl\",\"doi\":\"10.1007/s10703-022-00404-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>First-order transition systems are a convenient formalism to specify parametric systems such as multi-agent workflows or distributed algorithms. In general, any nontrivial question about such systems is undecidable. Here, we present three subclasses of first-order transition systems where every universal invariant can effectively be decided via fixpoint iteration. These subclasses are defined in terms of syntactical restrictions: negation, stratification and guardedness. While guardedness represents a particular pattern how input predicates control existential quantifiers, stratification limits the information flow between predicates. Guardedness implies that the weakest precondition for every universal invariant is again universal, while the remaining sufficient criteria enforce that either the number of occurring negated literals decreases in every iteration, or the number of required instances of input predicates or the number of first-order variables remains bounded. We argue for each of these three cases that termination of the fixpoint iteration can be guaranteed. We apply these results to identify classes of multi-agent systems, when formalized as first-order transition systems, where noninterference in presence of declassification is decidable for coalitions of attackers of bounded size.</p>\",\"PeriodicalId\":12430,\"journal\":{\"name\":\"Formal Methods in System Design\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formal Methods in System Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10703-022-00404-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formal Methods in System Design","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10703-022-00404-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
First-order transition systems are a convenient formalism to specify parametric systems such as multi-agent workflows or distributed algorithms. In general, any nontrivial question about such systems is undecidable. Here, we present three subclasses of first-order transition systems where every universal invariant can effectively be decided via fixpoint iteration. These subclasses are defined in terms of syntactical restrictions: negation, stratification and guardedness. While guardedness represents a particular pattern how input predicates control existential quantifiers, stratification limits the information flow between predicates. Guardedness implies that the weakest precondition for every universal invariant is again universal, while the remaining sufficient criteria enforce that either the number of occurring negated literals decreases in every iteration, or the number of required instances of input predicates or the number of first-order variables remains bounded. We argue for each of these three cases that termination of the fixpoint iteration can be guaranteed. We apply these results to identify classes of multi-agent systems, when formalized as first-order transition systems, where noninterference in presence of declassification is decidable for coalitions of attackers of bounded size.
期刊介绍:
The focus of this journal is on formal methods for designing, implementing, and validating the correctness of hardware (VLSI) and software systems. The stimulus for starting a journal with this goal came from both academia and industry. In both areas, interest in the use of formal methods has increased rapidly during the past few years. The enormous cost and time required to validate new designs has led to the realization that more powerful techniques must be developed. A number of techniques and tools are currently being devised for improving the reliability, and robustness of complex hardware and software systems. While the boundary between the (sub)components of a system that are cast in hardware, firmware, or software continues to blur, the relevant design disciplines and formal methods are maturing rapidly. Consequently, an important (and useful) collection of commonly applicable formal methods are expected to emerge that will strongly influence future design environments and design methods.