分层保护一阶过渡系统

IF 0.7 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Formal Methods in System Design Pub Date : 2022-11-22 DOI:10.1007/s10703-022-00404-9
Christian Müller, Helmut Seidl
{"title":"分层保护一阶过渡系统","authors":"Christian Müller, Helmut Seidl","doi":"10.1007/s10703-022-00404-9","DOIUrl":null,"url":null,"abstract":"<p>First-order transition systems are a convenient formalism to specify parametric systems such as multi-agent workflows or distributed algorithms. In general, any nontrivial question about such systems is undecidable. Here, we present three subclasses of first-order transition systems where every universal invariant can effectively be decided via fixpoint iteration. These subclasses are defined in terms of syntactical restrictions: negation, stratification and guardedness. While guardedness represents a particular pattern how input predicates control existential quantifiers, stratification limits the information flow between predicates. Guardedness implies that the weakest precondition for every universal invariant is again universal, while the remaining sufficient criteria enforce that either the number of occurring negated literals decreases in every iteration, or the number of required instances of input predicates or the number of first-order variables remains bounded. We argue for each of these three cases that termination of the fixpoint iteration can be guaranteed. We apply these results to identify classes of multi-agent systems, when formalized as first-order transition systems, where noninterference in presence of declassification is decidable for coalitions of attackers of bounded size.</p>","PeriodicalId":12430,"journal":{"name":"Formal Methods in System Design","volume":"4 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stratified guarded first-order transition systems\",\"authors\":\"Christian Müller, Helmut Seidl\",\"doi\":\"10.1007/s10703-022-00404-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>First-order transition systems are a convenient formalism to specify parametric systems such as multi-agent workflows or distributed algorithms. In general, any nontrivial question about such systems is undecidable. Here, we present three subclasses of first-order transition systems where every universal invariant can effectively be decided via fixpoint iteration. These subclasses are defined in terms of syntactical restrictions: negation, stratification and guardedness. While guardedness represents a particular pattern how input predicates control existential quantifiers, stratification limits the information flow between predicates. Guardedness implies that the weakest precondition for every universal invariant is again universal, while the remaining sufficient criteria enforce that either the number of occurring negated literals decreases in every iteration, or the number of required instances of input predicates or the number of first-order variables remains bounded. We argue for each of these three cases that termination of the fixpoint iteration can be guaranteed. We apply these results to identify classes of multi-agent systems, when formalized as first-order transition systems, where noninterference in presence of declassification is decidable for coalitions of attackers of bounded size.</p>\",\"PeriodicalId\":12430,\"journal\":{\"name\":\"Formal Methods in System Design\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formal Methods in System Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10703-022-00404-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formal Methods in System Design","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10703-022-00404-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

一阶转换系统是一种方便的形式,用于指定参数系统,如多智能体工作流或分布式算法。一般来说,关于这类系统的任何重要问题都是无法确定的。本文给出了一阶转移系统的三个子类,其中每一个普遍不变量都可以通过不动点迭代有效地确定。这些子类是根据语法限制定义的:否定、分层和保护。虽然守卫性代表了输入谓词控制存在量词的特定模式,但分层限制了谓词之间的信息流。Guardedness意味着对于每个全称不变量的最弱的先决条件还是全称的,而剩下的充分的标准强制要么在每次迭代中出现的否定文字的数量减少,要么输入谓词的所需实例的数量或一阶变量的数量保持有限。对于这三种情况,我们都认为定点迭代的终止是可以保证的。我们将这些结果应用于识别多智能体系统的类别,当形式化为一阶转移系统时,其中解密存在的不干扰对于有限大小的攻击者联盟是可确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stratified guarded first-order transition systems

First-order transition systems are a convenient formalism to specify parametric systems such as multi-agent workflows or distributed algorithms. In general, any nontrivial question about such systems is undecidable. Here, we present three subclasses of first-order transition systems where every universal invariant can effectively be decided via fixpoint iteration. These subclasses are defined in terms of syntactical restrictions: negation, stratification and guardedness. While guardedness represents a particular pattern how input predicates control existential quantifiers, stratification limits the information flow between predicates. Guardedness implies that the weakest precondition for every universal invariant is again universal, while the remaining sufficient criteria enforce that either the number of occurring negated literals decreases in every iteration, or the number of required instances of input predicates or the number of first-order variables remains bounded. We argue for each of these three cases that termination of the fixpoint iteration can be guaranteed. We apply these results to identify classes of multi-agent systems, when formalized as first-order transition systems, where noninterference in presence of declassification is decidable for coalitions of attackers of bounded size.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Formal Methods in System Design
Formal Methods in System Design 工程技术-计算机:理论方法
CiteScore
2.00
自引率
12.50%
发文量
16
审稿时长
>12 weeks
期刊介绍: The focus of this journal is on formal methods for designing, implementing, and validating the correctness of hardware (VLSI) and software systems. The stimulus for starting a journal with this goal came from both academia and industry. In both areas, interest in the use of formal methods has increased rapidly during the past few years. The enormous cost and time required to validate new designs has led to the realization that more powerful techniques must be developed. A number of techniques and tools are currently being devised for improving the reliability, and robustness of complex hardware and software systems. While the boundary between the (sub)components of a system that are cast in hardware, firmware, or software continues to blur, the relevant design disciplines and formal methods are maturing rapidly. Consequently, an important (and useful) collection of commonly applicable formal methods are expected to emerge that will strongly influence future design environments and design methods.
期刊最新文献
Abstraction Modulo Stability PAC statistical model checking of mean payoff in discrete- and continuous-time MDP A verified durable transactional mutex lock for persistent x86-TSO Formally understanding Rust’s ownership and borrowing system at the memory level The hexatope and octatope abstract domains for neural network verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1