Valeriia Baklanova, Aleksei Kurkin, Tamara Teplova
{"title":"投资者情绪与NFT炒作指数:买还是不买?","authors":"Valeriia Baklanova, Aleksei Kurkin, Tamara Teplova","doi":"10.1108/cfri-06-2023-0175","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The primary objective of this research is to provide a precise interpretation of the constructed machine learning model and produce definitive summaries that can evaluate the influence of investor sentiment on the overall sales of non-fungible token (NFT) assets. To achieve this objective, the NFT hype index was constructed as well as several approaches of XAI were employed to interpret Black Box models and assess the magnitude and direction of the impact of the features used.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The research paper involved the construction of a sentiment index termed the NFT hype index, which aims to measure the influence of market actors within the NFT industry. This index was created by analyzing written content posted by 62 high-profile individuals and opinion leaders on the social media platform Twitter. The authors collected posts from the Twitter accounts that were afterward classified by tonality with a help of natural language processing model VADER. Then the machine learning methods and XAI approaches (feature importance, permutation importance and SHAP) were applied to explain the obtained results.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The built index was subjected to rigorous analysis using the gradient boosting regressor model and explainable AI techniques, which confirmed its significant explanatory power. Remarkably, the NFT hype index exhibited a higher degree of predictive accuracy compared to the well-known sentiment indices.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>The NFT hype index, constructed from Twitter textual data, functions as an innovative, sentiment-based indicator for investment decision-making in the NFT market. It offers investors unique insights into the market sentiment that can be used alongside conventional financial analysis techniques to enhance risk management, portfolio optimization and overall investment outcomes within the rapidly evolving NFT ecosystem. Thus, the index plays a crucial role in facilitating well-informed, data-driven investment decisions and ensuring a competitive edge in the digital assets market.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The authors developed a novel index of investor interest for NFT assets (NFT hype index) based on text messages posted by market influencers and compared it to conventional sentiment indices in terms of their explanatory power. With the application of explainable AI, it was shown that sentiment indices may perform as significant predictors for NFT sales and that the NFT hype index works best among all sentiment indices considered.</p><!--/ Abstract__block -->","PeriodicalId":44440,"journal":{"name":"China Finance Review International","volume":"116 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investor sentiment and the NFT hype index: to buy or not to buy?\",\"authors\":\"Valeriia Baklanova, Aleksei Kurkin, Tamara Teplova\",\"doi\":\"10.1108/cfri-06-2023-0175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>The primary objective of this research is to provide a precise interpretation of the constructed machine learning model and produce definitive summaries that can evaluate the influence of investor sentiment on the overall sales of non-fungible token (NFT) assets. To achieve this objective, the NFT hype index was constructed as well as several approaches of XAI were employed to interpret Black Box models and assess the magnitude and direction of the impact of the features used.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>The research paper involved the construction of a sentiment index termed the NFT hype index, which aims to measure the influence of market actors within the NFT industry. This index was created by analyzing written content posted by 62 high-profile individuals and opinion leaders on the social media platform Twitter. The authors collected posts from the Twitter accounts that were afterward classified by tonality with a help of natural language processing model VADER. Then the machine learning methods and XAI approaches (feature importance, permutation importance and SHAP) were applied to explain the obtained results.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The built index was subjected to rigorous analysis using the gradient boosting regressor model and explainable AI techniques, which confirmed its significant explanatory power. Remarkably, the NFT hype index exhibited a higher degree of predictive accuracy compared to the well-known sentiment indices.</p><!--/ Abstract__block -->\\n<h3>Practical implications</h3>\\n<p>The NFT hype index, constructed from Twitter textual data, functions as an innovative, sentiment-based indicator for investment decision-making in the NFT market. It offers investors unique insights into the market sentiment that can be used alongside conventional financial analysis techniques to enhance risk management, portfolio optimization and overall investment outcomes within the rapidly evolving NFT ecosystem. Thus, the index plays a crucial role in facilitating well-informed, data-driven investment decisions and ensuring a competitive edge in the digital assets market.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The authors developed a novel index of investor interest for NFT assets (NFT hype index) based on text messages posted by market influencers and compared it to conventional sentiment indices in terms of their explanatory power. With the application of explainable AI, it was shown that sentiment indices may perform as significant predictors for NFT sales and that the NFT hype index works best among all sentiment indices considered.</p><!--/ Abstract__block -->\",\"PeriodicalId\":44440,\"journal\":{\"name\":\"China Finance Review International\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Finance Review International\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1108/cfri-06-2023-0175\",\"RegionNum\":1,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Finance Review International","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1108/cfri-06-2023-0175","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Investor sentiment and the NFT hype index: to buy or not to buy?
Purpose
The primary objective of this research is to provide a precise interpretation of the constructed machine learning model and produce definitive summaries that can evaluate the influence of investor sentiment on the overall sales of non-fungible token (NFT) assets. To achieve this objective, the NFT hype index was constructed as well as several approaches of XAI were employed to interpret Black Box models and assess the magnitude and direction of the impact of the features used.
Design/methodology/approach
The research paper involved the construction of a sentiment index termed the NFT hype index, which aims to measure the influence of market actors within the NFT industry. This index was created by analyzing written content posted by 62 high-profile individuals and opinion leaders on the social media platform Twitter. The authors collected posts from the Twitter accounts that were afterward classified by tonality with a help of natural language processing model VADER. Then the machine learning methods and XAI approaches (feature importance, permutation importance and SHAP) were applied to explain the obtained results.
Findings
The built index was subjected to rigorous analysis using the gradient boosting regressor model and explainable AI techniques, which confirmed its significant explanatory power. Remarkably, the NFT hype index exhibited a higher degree of predictive accuracy compared to the well-known sentiment indices.
Practical implications
The NFT hype index, constructed from Twitter textual data, functions as an innovative, sentiment-based indicator for investment decision-making in the NFT market. It offers investors unique insights into the market sentiment that can be used alongside conventional financial analysis techniques to enhance risk management, portfolio optimization and overall investment outcomes within the rapidly evolving NFT ecosystem. Thus, the index plays a crucial role in facilitating well-informed, data-driven investment decisions and ensuring a competitive edge in the digital assets market.
Originality/value
The authors developed a novel index of investor interest for NFT assets (NFT hype index) based on text messages posted by market influencers and compared it to conventional sentiment indices in terms of their explanatory power. With the application of explainable AI, it was shown that sentiment indices may perform as significant predictors for NFT sales and that the NFT hype index works best among all sentiment indices considered.
期刊介绍:
China Finance Review International publishes original and high-quality theoretical and empirical articles focusing on financial and economic issues arising from China's reform, opening-up, economic development, and system transformation. The journal serves as a platform for exchange between Chinese finance scholars and international financial economists, covering a wide range of topics including monetary policy, banking, international trade and finance, corporate finance, asset pricing, market microstructure, corporate governance, incentive studies, fiscal policy, public management, and state-owned enterprise reform.