兴奋性边缘的平衡:对细胞运动的影响

IF 1.8 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Mathematics of Control Signals and Systems Pub Date : 2023-07-22 DOI:10.1007/s00498-023-00361-6
Debojyoti Biswas, Parijat Banerjee, Pablo A. Iglesias
{"title":"兴奋性边缘的平衡:对细胞运动的影响","authors":"Debojyoti Biswas, Parijat Banerjee, Pablo A. Iglesias","doi":"10.1007/s00498-023-00361-6","DOIUrl":null,"url":null,"abstract":"<p>Cells rely on the ability to sense and respond to small spatial differences in chemoattractant concentrations for survival. There is growing evidence that this is accomplished by setting the signaling system near the threshold for activation in an excitable system and using the spatial heterogeneities to alter the threshold, thereby biasing cell activity in the direction of the gradient. Here we consider a scheme by which the set point is adaptively set near the bifurcation point, but without explicit knowledge of this point. Through simulation, we show that the method would improve chemotactic efficiency of cells. The results of this paper are based on pioneering work by Eduardo Sontag and coworkers, to whom this paper is dedicated in honor of his 70th birthday.</p>","PeriodicalId":51123,"journal":{"name":"Mathematics of Control Signals and Systems","volume":"80 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing at the edge of excitability: implications for cell movement\",\"authors\":\"Debojyoti Biswas, Parijat Banerjee, Pablo A. Iglesias\",\"doi\":\"10.1007/s00498-023-00361-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cells rely on the ability to sense and respond to small spatial differences in chemoattractant concentrations for survival. There is growing evidence that this is accomplished by setting the signaling system near the threshold for activation in an excitable system and using the spatial heterogeneities to alter the threshold, thereby biasing cell activity in the direction of the gradient. Here we consider a scheme by which the set point is adaptively set near the bifurcation point, but without explicit knowledge of this point. Through simulation, we show that the method would improve chemotactic efficiency of cells. The results of this paper are based on pioneering work by Eduardo Sontag and coworkers, to whom this paper is dedicated in honor of his 70th birthday.</p>\",\"PeriodicalId\":51123,\"journal\":{\"name\":\"Mathematics of Control Signals and Systems\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Control Signals and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00498-023-00361-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Control Signals and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00498-023-00361-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

细胞依赖于对化学引诱剂浓度的微小空间差异的感知和反应能力来生存。越来越多的证据表明,这是通过将信号系统设置在可兴奋系统的激活阈值附近,并利用空间异质性来改变阈值,从而使细胞活性在梯度方向上偏倚来实现的。这里我们考虑了一种集点在分支点附近自适应集点,但不知道该点的显式知识的方案。仿真结果表明,该方法可以提高细胞的趋化效率。这篇论文的结果是基于Eduardo Sontag及其同事的开创性工作,这篇论文是为了纪念他的70岁生日。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Balancing at the edge of excitability: implications for cell movement

Cells rely on the ability to sense and respond to small spatial differences in chemoattractant concentrations for survival. There is growing evidence that this is accomplished by setting the signaling system near the threshold for activation in an excitable system and using the spatial heterogeneities to alter the threshold, thereby biasing cell activity in the direction of the gradient. Here we consider a scheme by which the set point is adaptively set near the bifurcation point, but without explicit knowledge of this point. Through simulation, we show that the method would improve chemotactic efficiency of cells. The results of this paper are based on pioneering work by Eduardo Sontag and coworkers, to whom this paper is dedicated in honor of his 70th birthday.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics of Control Signals and Systems
Mathematics of Control Signals and Systems 工程技术-工程:电子与电气
CiteScore
2.90
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Mathematics of Control, Signals, and Systems (MCSS) is an international journal devoted to mathematical control and system theory, including system theoretic aspects of signal processing. Its unique feature is its focus on mathematical system theory; it concentrates on the mathematical theory of systems with inputs and/or outputs and dynamics that are typically described by deterministic or stochastic ordinary or partial differential equations, differential algebraic equations or difference equations. Potential topics include, but are not limited to controllability, observability, and realization theory, stability theory of nonlinear systems, system identification, mathematical aspects of switched, hybrid, networked, and stochastic systems, and system theoretic aspects of optimal control and other controller design techniques. Application oriented papers are welcome if they contain a significant theoretical contribution.
期刊最新文献
Overcoming limitations in stability theorems based on multiple Nussbaum functions Stability analysis of systems with delay-dependent coefficients and commensurate delays Controllability with one scalar control of a system of interaction between the Navier–Stokes system and a damped beam equation On the relations between stability optimization of linear time-delay systems and multiple rightmost characteristic roots The local representation of incrementally scattering passive nonlinear systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1