{"title":"ADAS:一种高计算利用率的动态可重构超分辨率硬件加速器","authors":"Liang Chang, Xin Zhao, Jun Zhou","doi":"https://dl.acm.org/doi/10.1145/3570927","DOIUrl":null,"url":null,"abstract":"<p>Super-resolution (SR) based on deep learning has obtained superior performance in image reconstruction. Recently, various algorithm efforts have been committed to improving image reconstruction quality and speed. However, the inference of SR contains huge amounts of computation and data access, leading to low hardware implementation efficiency. For instance, the up-sampling with the deconvolution process requires considerable computation resources. In addition, the sizes of output feature maps of several middle layers are extraordinarily large, which is challenging to optimize, causing serious data access issues. In this work, we present an all-on-chip hardware architecture based on the deconvolution scheme and feature map segmentation strategy, namely ADAS, where all the generated data by the middle layers are buffered on-chip to avoid large data movements between on- and off-chip. In ADAS, we develop a hardware-friendly and efficient deconvolution scheme to accelerate the computation. Also, the dynamic reconfigurable process element (PE) combined with efficient mapping is proposed to enhance PE utilization up to nearly 100% and support multiple scaling factors. Based on our experimental results, ADAS demonstrates real-time image SR and better image reconstruction quality with PSNR (37.15 <i>dB</i>) and SSIM (0.9587). Compared to baseline and validated with the FPGA platform, ADAS can support scaling factors of 2, 3, and 4, achieving 2.68 ×, 5.02 ×, and 8.28 × speedup.</p>","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"4 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ADAS: A High Computational Utilization Dynamic Reconfigurable Hardware Accelerator for Super Resolution\",\"authors\":\"Liang Chang, Xin Zhao, Jun Zhou\",\"doi\":\"https://dl.acm.org/doi/10.1145/3570927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Super-resolution (SR) based on deep learning has obtained superior performance in image reconstruction. Recently, various algorithm efforts have been committed to improving image reconstruction quality and speed. However, the inference of SR contains huge amounts of computation and data access, leading to low hardware implementation efficiency. For instance, the up-sampling with the deconvolution process requires considerable computation resources. In addition, the sizes of output feature maps of several middle layers are extraordinarily large, which is challenging to optimize, causing serious data access issues. In this work, we present an all-on-chip hardware architecture based on the deconvolution scheme and feature map segmentation strategy, namely ADAS, where all the generated data by the middle layers are buffered on-chip to avoid large data movements between on- and off-chip. In ADAS, we develop a hardware-friendly and efficient deconvolution scheme to accelerate the computation. Also, the dynamic reconfigurable process element (PE) combined with efficient mapping is proposed to enhance PE utilization up to nearly 100% and support multiple scaling factors. Based on our experimental results, ADAS demonstrates real-time image SR and better image reconstruction quality with PSNR (37.15 <i>dB</i>) and SSIM (0.9587). Compared to baseline and validated with the FPGA platform, ADAS can support scaling factors of 2, 3, and 4, achieving 2.68 ×, 5.02 ×, and 8.28 × speedup.</p>\",\"PeriodicalId\":49248,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3570927\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3570927","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
ADAS: A High Computational Utilization Dynamic Reconfigurable Hardware Accelerator for Super Resolution
Super-resolution (SR) based on deep learning has obtained superior performance in image reconstruction. Recently, various algorithm efforts have been committed to improving image reconstruction quality and speed. However, the inference of SR contains huge amounts of computation and data access, leading to low hardware implementation efficiency. For instance, the up-sampling with the deconvolution process requires considerable computation resources. In addition, the sizes of output feature maps of several middle layers are extraordinarily large, which is challenging to optimize, causing serious data access issues. In this work, we present an all-on-chip hardware architecture based on the deconvolution scheme and feature map segmentation strategy, namely ADAS, where all the generated data by the middle layers are buffered on-chip to avoid large data movements between on- and off-chip. In ADAS, we develop a hardware-friendly and efficient deconvolution scheme to accelerate the computation. Also, the dynamic reconfigurable process element (PE) combined with efficient mapping is proposed to enhance PE utilization up to nearly 100% and support multiple scaling factors. Based on our experimental results, ADAS demonstrates real-time image SR and better image reconstruction quality with PSNR (37.15 dB) and SSIM (0.9587). Compared to baseline and validated with the FPGA platform, ADAS can support scaling factors of 2, 3, and 4, achieving 2.68 ×, 5.02 ×, and 8.28 × speedup.
期刊介绍:
TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right.
Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications.
-The board and systems architectures of a reconfigurable platform.
-Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity.
-Languages and compilers for reconfigurable systems.
-Logic synthesis and related tools, as they relate to reconfigurable systems.
-Applications on which success can be demonstrated.
The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.)
In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.