Anupreetham Anupreetham, Mohamed Ibrahim, Mathew Hall, Andrew Boutros, Ajay Kuzhively, Abinash Mohanty, Eriko Nurvitadhi, Vaughn Betz, Yu Cao, Jae-sun Seo
{"title":"基于fpga的高吞吐量目标检测算法与硬件协同设计","authors":"Anupreetham Anupreetham, Mohamed Ibrahim, Mathew Hall, Andrew Boutros, Ajay Kuzhively, Abinash Mohanty, Eriko Nurvitadhi, Vaughn Betz, Yu Cao, Jae-sun Seo","doi":"10.1145/3634919","DOIUrl":null,"url":null,"abstract":"<p>Object detection and classification is a key task in many computer vision applications such as smart surveillance and autonomous vehicles. Recent advances in deep learning have significantly improved the quality of results achieved by these systems, making them more accurate and reliable in complex environments. Modern object detection systems make use of lightweight convolutional neural networks (CNNs) for feature extraction, coupled with single-shot multi-box detectors (SSDs) that generate bounding boxes around the identified objects along with their classification confidence scores. Subsequently, a non-maximum suppression (NMS) module removes any redundant detection boxes from the final output. Typical NMS algorithms must wait for all box predictions to be generated by the SSD-based feature extractor before processing them. This sequential dependency between box predictions and NMS results in a significant latency overhead and degrades the overall system throughput, even if a high-performance CNN accelerator is used for the SSD feature extraction component. In this paper, we present a novel pipelined NMS algorithm that eliminates this sequential dependency and associated NMS latency overhead. We then use our novel NMS algorithm to implement an end-to-end fully pipelined FPGA system for low-latency SSD-MobileNet-V1 object detection. Our system, implemented on an Intel Stratix 10 FPGA, runs at 400 MHz and achieves a throughput of 2,167 frames per second with an end-to-end batch-1 latency of 2.13 ms. Our system achieves 5.3 × higher throughput and 5 × lower latency compared to the best prior FPGA-based solution with comparable accuracy.</p>","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"8 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Throughput FPGA-Based Object Detection via Algorithm-Hardware Co-Design\",\"authors\":\"Anupreetham Anupreetham, Mohamed Ibrahim, Mathew Hall, Andrew Boutros, Ajay Kuzhively, Abinash Mohanty, Eriko Nurvitadhi, Vaughn Betz, Yu Cao, Jae-sun Seo\",\"doi\":\"10.1145/3634919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Object detection and classification is a key task in many computer vision applications such as smart surveillance and autonomous vehicles. Recent advances in deep learning have significantly improved the quality of results achieved by these systems, making them more accurate and reliable in complex environments. Modern object detection systems make use of lightweight convolutional neural networks (CNNs) for feature extraction, coupled with single-shot multi-box detectors (SSDs) that generate bounding boxes around the identified objects along with their classification confidence scores. Subsequently, a non-maximum suppression (NMS) module removes any redundant detection boxes from the final output. Typical NMS algorithms must wait for all box predictions to be generated by the SSD-based feature extractor before processing them. This sequential dependency between box predictions and NMS results in a significant latency overhead and degrades the overall system throughput, even if a high-performance CNN accelerator is used for the SSD feature extraction component. In this paper, we present a novel pipelined NMS algorithm that eliminates this sequential dependency and associated NMS latency overhead. We then use our novel NMS algorithm to implement an end-to-end fully pipelined FPGA system for low-latency SSD-MobileNet-V1 object detection. Our system, implemented on an Intel Stratix 10 FPGA, runs at 400 MHz and achieves a throughput of 2,167 frames per second with an end-to-end batch-1 latency of 2.13 ms. Our system achieves 5.3 × higher throughput and 5 × lower latency compared to the best prior FPGA-based solution with comparable accuracy.</p>\",\"PeriodicalId\":49248,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3634919\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3634919","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
High Throughput FPGA-Based Object Detection via Algorithm-Hardware Co-Design
Object detection and classification is a key task in many computer vision applications such as smart surveillance and autonomous vehicles. Recent advances in deep learning have significantly improved the quality of results achieved by these systems, making them more accurate and reliable in complex environments. Modern object detection systems make use of lightweight convolutional neural networks (CNNs) for feature extraction, coupled with single-shot multi-box detectors (SSDs) that generate bounding boxes around the identified objects along with their classification confidence scores. Subsequently, a non-maximum suppression (NMS) module removes any redundant detection boxes from the final output. Typical NMS algorithms must wait for all box predictions to be generated by the SSD-based feature extractor before processing them. This sequential dependency between box predictions and NMS results in a significant latency overhead and degrades the overall system throughput, even if a high-performance CNN accelerator is used for the SSD feature extraction component. In this paper, we present a novel pipelined NMS algorithm that eliminates this sequential dependency and associated NMS latency overhead. We then use our novel NMS algorithm to implement an end-to-end fully pipelined FPGA system for low-latency SSD-MobileNet-V1 object detection. Our system, implemented on an Intel Stratix 10 FPGA, runs at 400 MHz and achieves a throughput of 2,167 frames per second with an end-to-end batch-1 latency of 2.13 ms. Our system achieves 5.3 × higher throughput and 5 × lower latency compared to the best prior FPGA-based solution with comparable accuracy.
期刊介绍:
TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right.
Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications.
-The board and systems architectures of a reconfigurable platform.
-Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity.
-Languages and compilers for reconfigurable systems.
-Logic synthesis and related tools, as they relate to reconfigurable systems.
-Applications on which success can be demonstrated.
The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.)
In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.