Jordi Peerlings, Angèle Reinders, Cristina Catita, Miguel Centeno Brito
{"title":"高速公路沿线电动汽车充电的光伏潜力:荷兰案例研究","authors":"Jordi Peerlings, Angèle Reinders, Cristina Catita, Miguel Centeno Brito","doi":"10.1002/pip.3759","DOIUrl":null,"url":null,"abstract":"<p>The large-scale deployment of photovoltaics (PVs) along highways has the potential for the generation of clean electricity without competing for land use or burdening the power grid since energy for electric vehicles (EVs) can be generated locally on wastelands along highways near service stations. An analysis was carried out to evaluate the feasibility of integrating vertical bifacial solar modules into noise barriers. The approach involved integrating geospatial data with PV potential data using geographic information systems (GIS) technology. The results show a potential of around 200 GWh/year if all current noise barriers along highways in the Netherlands are considered suitable for PV module integration. Three case studies have been analysed regarding specific service stations for specific road orientations. It is shown that solar energy can charge more than 300 vehicles per day by combining bifacial PV noise barriers and standard mono-facial PV modules on publicly available land along the highway in all three case studies, which is sufficient to meet 80% of the expected EV charging demand along highways in 2030.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 4","pages":"244-252"},"PeriodicalIF":8.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3759","citationCount":"0","resultStr":"{\"title\":\"The photovoltaic potential for electric vehicle charging along highways: A Dutch case study\",\"authors\":\"Jordi Peerlings, Angèle Reinders, Cristina Catita, Miguel Centeno Brito\",\"doi\":\"10.1002/pip.3759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The large-scale deployment of photovoltaics (PVs) along highways has the potential for the generation of clean electricity without competing for land use or burdening the power grid since energy for electric vehicles (EVs) can be generated locally on wastelands along highways near service stations. An analysis was carried out to evaluate the feasibility of integrating vertical bifacial solar modules into noise barriers. The approach involved integrating geospatial data with PV potential data using geographic information systems (GIS) technology. The results show a potential of around 200 GWh/year if all current noise barriers along highways in the Netherlands are considered suitable for PV module integration. Three case studies have been analysed regarding specific service stations for specific road orientations. It is shown that solar energy can charge more than 300 vehicles per day by combining bifacial PV noise barriers and standard mono-facial PV modules on publicly available land along the highway in all three case studies, which is sufficient to meet 80% of the expected EV charging demand along highways in 2030.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"32 4\",\"pages\":\"244-252\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3759\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3759\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3759","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
The photovoltaic potential for electric vehicle charging along highways: A Dutch case study
The large-scale deployment of photovoltaics (PVs) along highways has the potential for the generation of clean electricity without competing for land use or burdening the power grid since energy for electric vehicles (EVs) can be generated locally on wastelands along highways near service stations. An analysis was carried out to evaluate the feasibility of integrating vertical bifacial solar modules into noise barriers. The approach involved integrating geospatial data with PV potential data using geographic information systems (GIS) technology. The results show a potential of around 200 GWh/year if all current noise barriers along highways in the Netherlands are considered suitable for PV module integration. Three case studies have been analysed regarding specific service stations for specific road orientations. It is shown that solar energy can charge more than 300 vehicles per day by combining bifacial PV noise barriers and standard mono-facial PV modules on publicly available land along the highway in all three case studies, which is sufficient to meet 80% of the expected EV charging demand along highways in 2030.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.