算法10xx: SuiteSparse:GraphBLAS:稀疏线性代数语言中的并行图算法

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Mathematical Software Pub Date : 2023-01-25 DOI:https://dl.acm.org/doi/10.1145/3577195
Timothy A. Davis
{"title":"算法10xx: SuiteSparse:GraphBLAS:稀疏线性代数语言中的并行图算法","authors":"Timothy A. Davis","doi":"https://dl.acm.org/doi/10.1145/3577195","DOIUrl":null,"url":null,"abstract":"<p>SuiteSparse:GraphBLAS is a full parallel implementation of the GraphBLAS standard, which defines a set of sparse matrix operations on an extended algebra of semirings using an almost unlimited variety of operators and types. When applied to sparse adjacency matrices, these algebraic operations are equivalent to computations on graphs. A description of the parallel implementation of SuiteSparse:GraphBLAS is given, including its novel parallel algorithms for sparse matrix multiply, addition, element-wise multiply, submatrix extraction and assignment, and the GraphBLAS mask/accumulator operation. Its performance is illustrated by solving the graph problems in the GAP Benchmark and by comparing it with other sparse matrix libraries.</p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"1 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithm 10xx: SuiteSparse:GraphBLAS: parallel graph algorithms in the language of sparse linear algebra\",\"authors\":\"Timothy A. Davis\",\"doi\":\"https://dl.acm.org/doi/10.1145/3577195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>SuiteSparse:GraphBLAS is a full parallel implementation of the GraphBLAS standard, which defines a set of sparse matrix operations on an extended algebra of semirings using an almost unlimited variety of operators and types. When applied to sparse adjacency matrices, these algebraic operations are equivalent to computations on graphs. A description of the parallel implementation of SuiteSparse:GraphBLAS is given, including its novel parallel algorithms for sparse matrix multiply, addition, element-wise multiply, submatrix extraction and assignment, and the GraphBLAS mask/accumulator operation. Its performance is illustrated by solving the graph problems in the GAP Benchmark and by comparing it with other sparse matrix libraries.</p>\",\"PeriodicalId\":50935,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3577195\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3577195","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

GraphBLAS是GraphBLAS标准的完全并行实现,它使用几乎无限种类的操作符和类型在扩展的半环代数上定义了一组稀疏矩阵操作。当应用于稀疏邻接矩阵时,这些代数运算相当于图上的计算。给出了SuiteSparse:GraphBLAS并行实现的描述,包括其用于稀疏矩阵乘法、加法、元素智能乘法、子矩阵提取和赋值以及GraphBLAS掩码/累加器操作的新型并行算法。通过解决GAP基准中的图问题并与其他稀疏矩阵库进行比较,说明了其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Algorithm 10xx: SuiteSparse:GraphBLAS: parallel graph algorithms in the language of sparse linear algebra

SuiteSparse:GraphBLAS is a full parallel implementation of the GraphBLAS standard, which defines a set of sparse matrix operations on an extended algebra of semirings using an almost unlimited variety of operators and types. When applied to sparse adjacency matrices, these algebraic operations are equivalent to computations on graphs. A description of the parallel implementation of SuiteSparse:GraphBLAS is given, including its novel parallel algorithms for sparse matrix multiply, addition, element-wise multiply, submatrix extraction and assignment, and the GraphBLAS mask/accumulator operation. Its performance is illustrated by solving the graph problems in the GAP Benchmark and by comparing it with other sparse matrix libraries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software 工程技术-计算机:软件工程
CiteScore
5.00
自引率
3.70%
发文量
50
审稿时长
>12 weeks
期刊介绍: As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.
期刊最新文献
Algorithm xxx: A Covariate-Dependent Approach to Gaussian Graphical Modeling in R Remark on Algorithm 1012: Computing projections with large data sets PyOED: An Extensible Suite for Data Assimilation and Model-Constrained Optimal Design of Experiments Avoiding breakdown in incomplete factorizations in low precision arithmetic Algorithm xxx: PyGenStability, a multiscale community detection with generalized Markov Stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1