在严格约束的应用程序中的自动化

Felix Neutatz, Marius Lindauer, Ziawasch Abedjan
{"title":"在严格约束的应用程序中的自动化","authors":"Felix Neutatz, Marius Lindauer, Ziawasch Abedjan","doi":"10.1007/s00778-023-00820-1","DOIUrl":null,"url":null,"abstract":"<p>Optimizing a machine learning pipeline for a task at hand requires careful configuration of various hyperparameters, typically supported by an AutoML system that optimizes the hyperparameters for the given training dataset. Yet, depending on the AutoML system’s own second-order meta-configuration, the performance of the AutoML process can vary significantly. Current AutoML systems cannot automatically adapt their own configuration to a specific use case. Further, they cannot compile user-defined application constraints on the effectiveness and efficiency of the pipeline and its generation. In this paper, we propose <span>Caml</span>, which uses meta-learning to automatically adapt its own AutoML parameters, such as the search strategy, the validation strategy, and the search space, for a task at hand. The dynamic AutoML strategy of <span>Caml</span> takes user-defined constraints into account and obtains constraint-satisfying pipelines with high predictive performance.\n</p>","PeriodicalId":501532,"journal":{"name":"The VLDB Journal","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AutoML in heavily constrained applications\",\"authors\":\"Felix Neutatz, Marius Lindauer, Ziawasch Abedjan\",\"doi\":\"10.1007/s00778-023-00820-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Optimizing a machine learning pipeline for a task at hand requires careful configuration of various hyperparameters, typically supported by an AutoML system that optimizes the hyperparameters for the given training dataset. Yet, depending on the AutoML system’s own second-order meta-configuration, the performance of the AutoML process can vary significantly. Current AutoML systems cannot automatically adapt their own configuration to a specific use case. Further, they cannot compile user-defined application constraints on the effectiveness and efficiency of the pipeline and its generation. In this paper, we propose <span>Caml</span>, which uses meta-learning to automatically adapt its own AutoML parameters, such as the search strategy, the validation strategy, and the search space, for a task at hand. The dynamic AutoML strategy of <span>Caml</span> takes user-defined constraints into account and obtains constraint-satisfying pipelines with high predictive performance.\\n</p>\",\"PeriodicalId\":501532,\"journal\":{\"name\":\"The VLDB Journal\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The VLDB Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00778-023-00820-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The VLDB Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00778-023-00820-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为手头的任务优化机器学习管道需要仔细配置各种超参数,通常由为给定训练数据集优化超参数的AutoML系统支持。然而,根据AutoML系统自己的二阶元配置,AutoML过程的性能可能会有很大的不同。当前的AutoML系统不能自动调整自己的配置以适应特定的用例。此外,它们不能对管道及其生成的有效性和效率编译用户定义的应用程序约束。在本文中,我们提出了Caml,它使用元学习来自动调整自己的AutoML参数,如搜索策略、验证策略和搜索空间,以完成手头的任务。Caml的动态AutoML策略考虑了用户自定义约束,获得了具有高预测性能的满足约束的管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AutoML in heavily constrained applications

Optimizing a machine learning pipeline for a task at hand requires careful configuration of various hyperparameters, typically supported by an AutoML system that optimizes the hyperparameters for the given training dataset. Yet, depending on the AutoML system’s own second-order meta-configuration, the performance of the AutoML process can vary significantly. Current AutoML systems cannot automatically adapt their own configuration to a specific use case. Further, they cannot compile user-defined application constraints on the effectiveness and efficiency of the pipeline and its generation. In this paper, we propose Caml, which uses meta-learning to automatically adapt its own AutoML parameters, such as the search strategy, the validation strategy, and the search space, for a task at hand. The dynamic AutoML strategy of Caml takes user-defined constraints into account and obtains constraint-satisfying pipelines with high predictive performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A versatile framework for attributed network clustering via K-nearest neighbor augmentation Discovering critical vertices for reinforcement of large-scale bipartite networks DumpyOS: A data-adaptive multi-ary index for scalable data series similarity search Enabling space-time efficient range queries with REncoder AutoCTS++: zero-shot joint neural architecture and hyperparameter search for correlated time series forecasting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1