计算自然哲学:从前苏格拉底到图灵再到ChatGPT的一条线索

Gordana Dodig-Crnkovic
{"title":"计算自然哲学:从前苏格拉底到图灵再到ChatGPT的一条线索","authors":"Gordana Dodig-Crnkovic","doi":"arxiv-2309.13094","DOIUrl":null,"url":null,"abstract":"Modern computational natural philosophy conceptualizes the universe in terms\nof information and computation, establishing a framework for the study of\ncognition and intelligence. Despite some critiques, this computational\nperspective has significantly influenced our understanding of the natural\nworld, leading to the development of AI systems like ChatGPT based on deep\nneural networks. Advancements in this domain have been facilitated by\ninterdisciplinary research, integrating knowledge from multiple fields to\nsimulate complex systems. Large Language Models (LLMs), such as ChatGPT,\nrepresent this approach's capabilities, utilizing reinforcement learning with\nhuman feedback (RLHF). Current research initiatives aim to integrate neural\nnetworks with symbolic computing, introducing a new generation of hybrid\ncomputational models.","PeriodicalId":501533,"journal":{"name":"arXiv - CS - General Literature","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Natural Philosophy: A Thread from Presocratics through Turing to ChatGPT\",\"authors\":\"Gordana Dodig-Crnkovic\",\"doi\":\"arxiv-2309.13094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern computational natural philosophy conceptualizes the universe in terms\\nof information and computation, establishing a framework for the study of\\ncognition and intelligence. Despite some critiques, this computational\\nperspective has significantly influenced our understanding of the natural\\nworld, leading to the development of AI systems like ChatGPT based on deep\\nneural networks. Advancements in this domain have been facilitated by\\ninterdisciplinary research, integrating knowledge from multiple fields to\\nsimulate complex systems. Large Language Models (LLMs), such as ChatGPT,\\nrepresent this approach's capabilities, utilizing reinforcement learning with\\nhuman feedback (RLHF). Current research initiatives aim to integrate neural\\nnetworks with symbolic computing, introducing a new generation of hybrid\\ncomputational models.\",\"PeriodicalId\":501533,\"journal\":{\"name\":\"arXiv - CS - General Literature\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - General Literature\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2309.13094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - General Literature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2309.13094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代计算自然哲学从信息和计算的角度对宇宙进行概念化,为研究认知和智能建立了框架。尽管有一些批评,但这种计算视角极大地影响了我们对自然世界的理解,导致了基于深度神经网络的ChatGPT等人工智能系统的发展。跨学科研究促进了这一领域的进步,整合了多个领域的知识来模拟复杂系统。大型语言模型(llm),如ChatGPT,代表了这种方法的能力,利用强化学习与人类反馈(RLHF)。目前的研究计划旨在将神经网络与符号计算相结合,引入新一代混合计算模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational Natural Philosophy: A Thread from Presocratics through Turing to ChatGPT
Modern computational natural philosophy conceptualizes the universe in terms of information and computation, establishing a framework for the study of cognition and intelligence. Despite some critiques, this computational perspective has significantly influenced our understanding of the natural world, leading to the development of AI systems like ChatGPT based on deep neural networks. Advancements in this domain have been facilitated by interdisciplinary research, integrating knowledge from multiple fields to simulate complex systems. Large Language Models (LLMs), such as ChatGPT, represent this approach's capabilities, utilizing reinforcement learning with human feedback (RLHF). Current research initiatives aim to integrate neural networks with symbolic computing, introducing a new generation of hybrid computational models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A guideline for the methodology chapter in computer science dissertations Eternal Sunshine of the Mechanical Mind: The Irreconcilability of Machine Learning and the Right to be Forgotten A Comprehensive Overview of Fish-Eye Camera Distortion Correction Methods The 4+1 Model of Data Science Computational Natural Philosophy: A Thread from Presocratics through Turing to ChatGPT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1