RangL:一个强化学习竞赛平台

Viktor Zobernig, Richard A. Saldanha, Jinke He, Erica van der Sar, Jasper van Doorn, Jia-Chen Hua, Lachlan R. Mason, Aleksander Czechowski, Drago Indjic, Tomasz Kosmala, Alessandro Zocca, Sandjai Bhulai, Jorge Montalvo Arvizu, Claude Klöckl, John Moriarty
{"title":"RangL:一个强化学习竞赛平台","authors":"Viktor Zobernig, Richard A. Saldanha, Jinke He, Erica van der Sar, Jasper van Doorn, Jia-Chen Hua, Lachlan R. Mason, Aleksander Czechowski, Drago Indjic, Tomasz Kosmala, Alessandro Zocca, Sandjai Bhulai, Jorge Montalvo Arvizu, Claude Klöckl, John Moriarty","doi":"arxiv-2208.00003","DOIUrl":null,"url":null,"abstract":"The RangL project hosted by The Alan Turing Institute aims to encourage the\nwider uptake of reinforcement learning by supporting competitions relating to\nreal-world dynamic decision problems. This article describes the reusable code\nrepository developed by the RangL team and deployed for the 2022 Pathways to\nNet Zero Challenge, supported by the UK Net Zero Technology Centre. The winning\nsolutions to this particular Challenge seek to optimize the UK's energy\ntransition policy to net zero carbon emissions by 2050. The RangL repository\nincludes an OpenAI Gym reinforcement learning environment and code that\nsupports both submission to, and evaluation in, a remote instance of the open\nsource EvalAI platform as well as all winning learning agent strategies. The\nrepository is an illustrative example of RangL's capability to provide a\nreusable structure for future challenges.","PeriodicalId":501533,"journal":{"name":"arXiv - CS - General Literature","volume":"193 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RangL: A Reinforcement Learning Competition Platform\",\"authors\":\"Viktor Zobernig, Richard A. Saldanha, Jinke He, Erica van der Sar, Jasper van Doorn, Jia-Chen Hua, Lachlan R. Mason, Aleksander Czechowski, Drago Indjic, Tomasz Kosmala, Alessandro Zocca, Sandjai Bhulai, Jorge Montalvo Arvizu, Claude Klöckl, John Moriarty\",\"doi\":\"arxiv-2208.00003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The RangL project hosted by The Alan Turing Institute aims to encourage the\\nwider uptake of reinforcement learning by supporting competitions relating to\\nreal-world dynamic decision problems. This article describes the reusable code\\nrepository developed by the RangL team and deployed for the 2022 Pathways to\\nNet Zero Challenge, supported by the UK Net Zero Technology Centre. The winning\\nsolutions to this particular Challenge seek to optimize the UK's energy\\ntransition policy to net zero carbon emissions by 2050. The RangL repository\\nincludes an OpenAI Gym reinforcement learning environment and code that\\nsupports both submission to, and evaluation in, a remote instance of the open\\nsource EvalAI platform as well as all winning learning agent strategies. The\\nrepository is an illustrative example of RangL's capability to provide a\\nreusable structure for future challenges.\",\"PeriodicalId\":501533,\"journal\":{\"name\":\"arXiv - CS - General Literature\",\"volume\":\"193 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - General Literature\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2208.00003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - General Literature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2208.00003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿兰图灵研究所主持的RangL项目旨在通过支持与现实世界动态决策问题相关的竞争,鼓励更广泛地采用强化学习。本文描述了RangL团队开发的可重用代码存储库,该代码存储库由英国净零技术中心支持,为2022年路径网络零挑战部署。这一特殊挑战的获奖解决方案旨在优化英国的能源转型政策,到2050年实现净零碳排放。RangL存储库包括OpenAI Gym强化学习环境和代码,支持向开源EvalAI平台的远程实例提交和评估,以及所有获胜的学习代理策略。存储库是RangL为未来的挑战提供可重用结构的能力的一个说明性示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RangL: A Reinforcement Learning Competition Platform
The RangL project hosted by The Alan Turing Institute aims to encourage the wider uptake of reinforcement learning by supporting competitions relating to real-world dynamic decision problems. This article describes the reusable code repository developed by the RangL team and deployed for the 2022 Pathways to Net Zero Challenge, supported by the UK Net Zero Technology Centre. The winning solutions to this particular Challenge seek to optimize the UK's energy transition policy to net zero carbon emissions by 2050. The RangL repository includes an OpenAI Gym reinforcement learning environment and code that supports both submission to, and evaluation in, a remote instance of the open source EvalAI platform as well as all winning learning agent strategies. The repository is an illustrative example of RangL's capability to provide a reusable structure for future challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A guideline for the methodology chapter in computer science dissertations Eternal Sunshine of the Mechanical Mind: The Irreconcilability of Machine Learning and the Right to be Forgotten A Comprehensive Overview of Fish-Eye Camera Distortion Correction Methods The 4+1 Model of Data Science Computational Natural Philosophy: A Thread from Presocratics through Turing to ChatGPT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1