用黎曼几何方法对误差相关电位进行分类

Yichen Tang, Jerry J. Zhang, Paul M. Corballis, Luke E. Hallum
{"title":"用黎曼几何方法对误差相关电位进行分类","authors":"Yichen Tang, Jerry J. Zhang, Paul M. Corballis, Luke E. Hallum","doi":"arxiv-2109.13085","DOIUrl":null,"url":null,"abstract":"The error-related potential (ErrP) is an event-related potential (ERP) evoked\nby an experimental participant's recognition of an error during task\nperformance. ErrPs, originally described by cognitive psychologists, have been\nadopted for use in brain-computer interfaces (BCIs) for the detection and\ncorrection of errors, and the online refinement of decoding algorithms.\nRiemannian geometry-based feature extraction and classification is a new\napproach to BCI which shows good performance in a range of experimental\nparadigms, but has yet to be applied to the classification of ErrPs. Here, we\ndescribe an experiment that elicited ErrPs in seven normal participants\nperforming a visual discrimination task. Audio feedback was provided on each\ntrial. We used multi-channel electroencephalogram (EEG) recordings to classify\nErrPs (success/failure), comparing a Riemannian geometry-based method to a\ntraditional approach that computes time-point features. Overall, the Riemannian\napproach outperformed the traditional approach (78.2% versus 75.9% accuracy, p\n< 0.05); this difference was statistically significant (p < 0.05) in three of\nseven participants. These results indicate that the Riemannian approach better\ncaptured the features from feedback-elicited ErrPs, and may have application in\nBCI for error detection and correction.","PeriodicalId":501533,"journal":{"name":"arXiv - CS - General Literature","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards the Classification of Error-Related Potentials using Riemannian Geometry\",\"authors\":\"Yichen Tang, Jerry J. Zhang, Paul M. Corballis, Luke E. Hallum\",\"doi\":\"arxiv-2109.13085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The error-related potential (ErrP) is an event-related potential (ERP) evoked\\nby an experimental participant's recognition of an error during task\\nperformance. ErrPs, originally described by cognitive psychologists, have been\\nadopted for use in brain-computer interfaces (BCIs) for the detection and\\ncorrection of errors, and the online refinement of decoding algorithms.\\nRiemannian geometry-based feature extraction and classification is a new\\napproach to BCI which shows good performance in a range of experimental\\nparadigms, but has yet to be applied to the classification of ErrPs. Here, we\\ndescribe an experiment that elicited ErrPs in seven normal participants\\nperforming a visual discrimination task. Audio feedback was provided on each\\ntrial. We used multi-channel electroencephalogram (EEG) recordings to classify\\nErrPs (success/failure), comparing a Riemannian geometry-based method to a\\ntraditional approach that computes time-point features. Overall, the Riemannian\\napproach outperformed the traditional approach (78.2% versus 75.9% accuracy, p\\n< 0.05); this difference was statistically significant (p < 0.05) in three of\\nseven participants. These results indicate that the Riemannian approach better\\ncaptured the features from feedback-elicited ErrPs, and may have application in\\nBCI for error detection and correction.\",\"PeriodicalId\":501533,\"journal\":{\"name\":\"arXiv - CS - General Literature\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - General Literature\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2109.13085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - General Literature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2109.13085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

错误相关电位(ErrP)是由实验参与者在任务执行过程中对错误的认识而引起的事件相关电位(ERP)。errp最初由认知心理学家描述,已被用于脑机接口(bci),用于检测和纠正错误,以及在线改进解码算法。基于黎曼几何的特征提取和分类是一种新的脑机接口方法,在一系列实验范式中表现出良好的性能,但尚未应用于errp的分类。在这里,我们描述了一个实验,在7名正常参与者执行视觉辨别任务时引发errp。每次试验都提供了音频反馈。我们使用多通道脑电图(EEG)记录对errp(成功/失败)进行分类,并将基于黎曼几何的方法与计算时间点特征的传统方法进行比较。总体而言,riemannanmethod优于传统方法(准确率78.2% vs 75.9%, p< 0.05);这一差异在7名参与者中有3名具有统计学意义(p < 0.05)。这些结果表明,黎曼方法可以更好地捕获反馈引发的errp的特征,并且可以在脑机接口中应用于错误检测和纠正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards the Classification of Error-Related Potentials using Riemannian Geometry
The error-related potential (ErrP) is an event-related potential (ERP) evoked by an experimental participant's recognition of an error during task performance. ErrPs, originally described by cognitive psychologists, have been adopted for use in brain-computer interfaces (BCIs) for the detection and correction of errors, and the online refinement of decoding algorithms. Riemannian geometry-based feature extraction and classification is a new approach to BCI which shows good performance in a range of experimental paradigms, but has yet to be applied to the classification of ErrPs. Here, we describe an experiment that elicited ErrPs in seven normal participants performing a visual discrimination task. Audio feedback was provided on each trial. We used multi-channel electroencephalogram (EEG) recordings to classify ErrPs (success/failure), comparing a Riemannian geometry-based method to a traditional approach that computes time-point features. Overall, the Riemannian approach outperformed the traditional approach (78.2% versus 75.9% accuracy, p < 0.05); this difference was statistically significant (p < 0.05) in three of seven participants. These results indicate that the Riemannian approach better captured the features from feedback-elicited ErrPs, and may have application in BCI for error detection and correction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A guideline for the methodology chapter in computer science dissertations Eternal Sunshine of the Mechanical Mind: The Irreconcilability of Machine Learning and the Right to be Forgotten A Comprehensive Overview of Fish-Eye Camera Distortion Correction Methods The 4+1 Model of Data Science Computational Natural Philosophy: A Thread from Presocratics through Turing to ChatGPT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1