数据科学项目成功因素的调查研究

Iñigo Martinez, Elisabeth Viles, Igor G. Olaizola
{"title":"数据科学项目成功因素的调查研究","authors":"Iñigo Martinez, Elisabeth Viles, Igor G. Olaizola","doi":"arxiv-2201.06310","DOIUrl":null,"url":null,"abstract":"In recent years, the data science community has pursued excellence and made\nsignificant research efforts to develop advanced analytics, focusing on solving\ntechnical problems at the expense of organizational and socio-technical\nchallenges. According to previous surveys on the state of data science project\nmanagement, there is a significant gap between technical and organizational\nprocesses. In this article we present new empirical data from a survey to 237\ndata science professionals on the use of project management methodologies for\ndata science. We provide additional profiling of the survey respondents' roles\nand their priorities when executing data science projects. Based on this survey\nstudy, the main findings are: (1) Agile data science lifecycle is the most\nwidely used framework, but only 25% of the survey participants state to follow\na data science project methodology. (2) The most important success factors are\nprecisely describing stakeholders' needs, communicating the results to\nend-users, and team collaboration and coordination. (3) Professionals who\nadhere to a project methodology place greater emphasis on the project's\npotential risks and pitfalls, version control, the deployment pipeline to\nproduction, and data security and privacy.","PeriodicalId":501533,"journal":{"name":"arXiv - CS - General Literature","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A survey study of success factors in data science projects\",\"authors\":\"Iñigo Martinez, Elisabeth Viles, Igor G. Olaizola\",\"doi\":\"arxiv-2201.06310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the data science community has pursued excellence and made\\nsignificant research efforts to develop advanced analytics, focusing on solving\\ntechnical problems at the expense of organizational and socio-technical\\nchallenges. According to previous surveys on the state of data science project\\nmanagement, there is a significant gap between technical and organizational\\nprocesses. In this article we present new empirical data from a survey to 237\\ndata science professionals on the use of project management methodologies for\\ndata science. We provide additional profiling of the survey respondents' roles\\nand their priorities when executing data science projects. Based on this survey\\nstudy, the main findings are: (1) Agile data science lifecycle is the most\\nwidely used framework, but only 25% of the survey participants state to follow\\na data science project methodology. (2) The most important success factors are\\nprecisely describing stakeholders' needs, communicating the results to\\nend-users, and team collaboration and coordination. (3) Professionals who\\nadhere to a project methodology place greater emphasis on the project's\\npotential risks and pitfalls, version control, the deployment pipeline to\\nproduction, and data security and privacy.\",\"PeriodicalId\":501533,\"journal\":{\"name\":\"arXiv - CS - General Literature\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - General Literature\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2201.06310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - General Literature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2201.06310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,数据科学界一直在追求卓越,并在开发高级分析方面做出了重大的研究努力,以牺牲组织和社会技术挑战为代价,专注于解决技术问题。根据之前对数据科学项目管理状态的调查,技术过程和组织过程之间存在着显著的差距。在这篇文章中,我们提出了对237名数据科学专业人员使用项目管理方法进行数据科学调查的新经验数据。我们提供了调查对象在执行数据科学项目时的角色和优先级的额外分析。基于这项调查研究,主要发现是:(1)敏捷数据科学生命周期是最广泛使用的框架,但只有25%的调查参与者表示遵循数据科学项目方法。(2)最重要的成功因素是准确描述利益相关者的需求,将结果传达给最终用户,以及团队的协作和协调。(3)坚持项目方法论的专业人员更加强调项目的潜在风险和缺陷、版本控制、从部署到生产的管道,以及数据安全和隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A survey study of success factors in data science projects
In recent years, the data science community has pursued excellence and made significant research efforts to develop advanced analytics, focusing on solving technical problems at the expense of organizational and socio-technical challenges. According to previous surveys on the state of data science project management, there is a significant gap between technical and organizational processes. In this article we present new empirical data from a survey to 237 data science professionals on the use of project management methodologies for data science. We provide additional profiling of the survey respondents' roles and their priorities when executing data science projects. Based on this survey study, the main findings are: (1) Agile data science lifecycle is the most widely used framework, but only 25% of the survey participants state to follow a data science project methodology. (2) The most important success factors are precisely describing stakeholders' needs, communicating the results to end-users, and team collaboration and coordination. (3) Professionals who adhere to a project methodology place greater emphasis on the project's potential risks and pitfalls, version control, the deployment pipeline to production, and data security and privacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A guideline for the methodology chapter in computer science dissertations Eternal Sunshine of the Mechanical Mind: The Irreconcilability of Machine Learning and the Right to be Forgotten A Comprehensive Overview of Fish-Eye Camera Distortion Correction Methods The 4+1 Model of Data Science Computational Natural Philosophy: A Thread from Presocratics through Turing to ChatGPT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1