人工智能赋能研究:科学如何从人工智能中受益的10种方式

César França
{"title":"人工智能赋能研究:科学如何从人工智能中受益的10种方式","authors":"César França","doi":"arxiv-2307.10265","DOIUrl":null,"url":null,"abstract":"This article explores the transformative impact of artificial intelligence\n(AI) on scientific research. It highlights ten ways in which AI is\nrevolutionizing the work of scientists, including powerful referencing tools,\nimproved understanding of research problems, enhanced research question\ngeneration, optimized research design, stub data generation, data\ntransformation, advanced data analysis, and AI-assisted reporting. While AI\noffers numerous benefits, challenges such as bias, privacy concerns, and the\nneed for human-AI collaboration must be considered. The article emphasizes that\nAI can augment human creativity in science but not replace it.","PeriodicalId":501533,"journal":{"name":"arXiv - CS - General Literature","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI empowering research: 10 ways how science can benefit from AI\",\"authors\":\"César França\",\"doi\":\"arxiv-2307.10265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article explores the transformative impact of artificial intelligence\\n(AI) on scientific research. It highlights ten ways in which AI is\\nrevolutionizing the work of scientists, including powerful referencing tools,\\nimproved understanding of research problems, enhanced research question\\ngeneration, optimized research design, stub data generation, data\\ntransformation, advanced data analysis, and AI-assisted reporting. While AI\\noffers numerous benefits, challenges such as bias, privacy concerns, and the\\nneed for human-AI collaboration must be considered. The article emphasizes that\\nAI can augment human creativity in science but not replace it.\",\"PeriodicalId\":501533,\"journal\":{\"name\":\"arXiv - CS - General Literature\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - General Literature\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2307.10265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - General Literature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2307.10265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了人工智能(AI)对科学研究的变革性影响。它强调了人工智能改变科学家工作的十种方式,包括强大的参考工具、对研究问题的更好理解、增强的研究问题生成、优化的研究设计、stub数据生成、数据转换、高级数据分析和人工智能辅助报告。虽然人工智能提供了许多好处,但必须考虑偏见、隐私问题以及人类与人工智能合作的需求等挑战。这篇文章强调,人工智能可以增强人类在科学方面的创造力,但不能取代它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI empowering research: 10 ways how science can benefit from AI
This article explores the transformative impact of artificial intelligence (AI) on scientific research. It highlights ten ways in which AI is revolutionizing the work of scientists, including powerful referencing tools, improved understanding of research problems, enhanced research question generation, optimized research design, stub data generation, data transformation, advanced data analysis, and AI-assisted reporting. While AI offers numerous benefits, challenges such as bias, privacy concerns, and the need for human-AI collaboration must be considered. The article emphasizes that AI can augment human creativity in science but not replace it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A guideline for the methodology chapter in computer science dissertations Eternal Sunshine of the Mechanical Mind: The Irreconcilability of Machine Learning and the Right to be Forgotten A Comprehensive Overview of Fish-Eye Camera Distortion Correction Methods The 4+1 Model of Data Science Computational Natural Philosophy: A Thread from Presocratics through Turing to ChatGPT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1