贝叶斯逆问题的领域分解 VAE 方法

IF 1.5 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY International Journal for Uncertainty Quantification Pub Date : 2023-12-01 DOI:10.1615/int.j.uncertaintyquantification.2023047236
Zhihang Xu, Yingzhi Xia, Qifeng Liao
{"title":"贝叶斯逆问题的领域分解 VAE 方法","authors":"Zhihang Xu, Yingzhi Xia, Qifeng Liao","doi":"10.1615/int.j.uncertaintyquantification.2023047236","DOIUrl":null,"url":null,"abstract":"Bayesian inverse problems are often computationally challenging when the forward model is governed by complex partial differential equations (PDEs). This is typically caused by expensive forward model evaluations and high-dimensional parameterization of priors. This paper proposes a domain-decomposed variational auto-encoder Markov chain Monte Carlo (DD-VAE-MCMC) method to tackle these challenges simultaneously. Through partitioning the global physical domain into small subdomains, the proposed method first constructs local deterministic generative models based on local historical data, which provide efficient local prior representations.\nGaussian process models with active learning address the domain decomposition interface conditions.\nThen inversions are conducted on each subdomain independently in parallel and in low-dimensional latent parameter spaces. The local inference solutions are post-processed through the Poisson image blending procedure to result in an efficient global inference result. Numerical examples are provided to demonstrate the performance of the proposed method.","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A domain-decomposed VAE method for Bayesian inverse problems\",\"authors\":\"Zhihang Xu, Yingzhi Xia, Qifeng Liao\",\"doi\":\"10.1615/int.j.uncertaintyquantification.2023047236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian inverse problems are often computationally challenging when the forward model is governed by complex partial differential equations (PDEs). This is typically caused by expensive forward model evaluations and high-dimensional parameterization of priors. This paper proposes a domain-decomposed variational auto-encoder Markov chain Monte Carlo (DD-VAE-MCMC) method to tackle these challenges simultaneously. Through partitioning the global physical domain into small subdomains, the proposed method first constructs local deterministic generative models based on local historical data, which provide efficient local prior representations.\\nGaussian process models with active learning address the domain decomposition interface conditions.\\nThen inversions are conducted on each subdomain independently in parallel and in low-dimensional latent parameter spaces. The local inference solutions are post-processed through the Poisson image blending procedure to result in an efficient global inference result. Numerical examples are provided to demonstrate the performance of the proposed method.\",\"PeriodicalId\":48814,\"journal\":{\"name\":\"International Journal for Uncertainty Quantification\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Uncertainty Quantification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/int.j.uncertaintyquantification.2023047236\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2023047236","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

当前瞻模型受复杂偏微分方程(PDEs)支配时,贝叶斯逆问题通常在计算上具有挑战性。这通常是由于昂贵的前向模型评估和高维的前验参数化造成的。本文提出了一种域分解变异自动编码器马尔可夫链蒙特卡罗(DD-VAE-MCMC)方法,以同时应对这些挑战。通过将全局物理域划分为小的子域,本文提出的方法首先基于本地历史数据构建本地确定性生成模型,从而提供高效的本地先验表示。通过泊松图像混合程序对局部推理解进行后处理,从而得到高效的全局推理结果。我们提供了一些数值示例来证明所提议方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A domain-decomposed VAE method for Bayesian inverse problems
Bayesian inverse problems are often computationally challenging when the forward model is governed by complex partial differential equations (PDEs). This is typically caused by expensive forward model evaluations and high-dimensional parameterization of priors. This paper proposes a domain-decomposed variational auto-encoder Markov chain Monte Carlo (DD-VAE-MCMC) method to tackle these challenges simultaneously. Through partitioning the global physical domain into small subdomains, the proposed method first constructs local deterministic generative models based on local historical data, which provide efficient local prior representations. Gaussian process models with active learning address the domain decomposition interface conditions. Then inversions are conducted on each subdomain independently in parallel and in low-dimensional latent parameter spaces. The local inference solutions are post-processed through the Poisson image blending procedure to result in an efficient global inference result. Numerical examples are provided to demonstrate the performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Uncertainty Quantification
International Journal for Uncertainty Quantification ENGINEERING, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.60
自引率
5.90%
发文量
28
期刊介绍: The International Journal for Uncertainty Quantification disseminates information of permanent interest in the areas of analysis, modeling, design and control of complex systems in the presence of uncertainty. The journal seeks to emphasize methods that cross stochastic analysis, statistical modeling and scientific computing. Systems of interest are governed by differential equations possibly with multiscale features. Topics of particular interest include representation of uncertainty, propagation of uncertainty across scales, resolving the curse of dimensionality, long-time integration for stochastic PDEs, data-driven approaches for constructing stochastic models, validation, verification and uncertainty quantification for predictive computational science, and visualization of uncertainty in high-dimensional spaces. Bayesian computation and machine learning techniques are also of interest for example in the context of stochastic multiscale systems, for model selection/classification, and decision making. Reports addressing the dynamic coupling of modern experiments and modeling approaches towards predictive science are particularly encouraged. Applications of uncertainty quantification in all areas of physical and biological sciences are appropriate.
期刊最新文献
Bayesian³ Active learning for regularized arbitrary multi-element polynomial chaos using information theory Sobol’ sensitivity indices– A Machine Learning approach using the Dynamic Adaptive Variances Estimator with Given Data Extremes of vector-valued processes by finite dimensional models A novel probabilistic transfer learning strategy for polynomial regression Variance-based sensitivity of Bayesian inverse problems to the prior distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1