O. A. Katok, R. V. Kravchuk, A. V. Sereda, V. V. Kharchenko, M. P. Rudnytskyi
{"title":"更新通过仪器压痕法测定结构部件强度特性的便携式装置","authors":"O. A. Katok, R. V. Kravchuk, A. V. Sereda, V. V. Kharchenko, M. P. Rudnytskyi","doi":"10.1007/s11223-023-00586-5","DOIUrl":null,"url":null,"abstract":"<p>The instrumented indentation method, based on the digital recording of the parameters of the entire process of continuous local deformation of the material by an indenter, provides more complete and accurate information about the material’s behavior under load. Obtaining such information without compromising the integrity of a critical structure during operation increases its value. Therefore, more and more attention has recently been paid to portable installations and devices that use the instrumented indentation method. To date, no such equipment is manufactured in Ukraine. Therefore, there is a need to develop portable equipment for conducting such tests in the field under various modes of static and cyclic loading in the macro range of forces. The paper describes an updated portable installation PIIT-02M for determining the strength characteristics of structural elements in service by instrumented indentation, which was developed following the requirements of ISO 14577 and is intended for testing at the macro level. The system of fastening the portable installation on the test object was updated from mechanical (hooks and chains) to electromagnetic. This made it possible to conduct tests on pipes and flat surfaces, including sheet materials and structures made of them, significantly increasing the test efficiency and expanding the range of applications. Comparative tests on a 12 mm thick structural carbon 20 steel plate using the previous mechanical fastening system and the new electromagnetic one showed that the indentation diagrams obtained overlap well. Based on the results of tests of high-strength steels, the portable installation PIIT-02M allows one under both laboratory and operating conditions to record the process of indentation of the indenter into specimens of structural materials with high accuracy and, accordingly, to determine their mechanical characteristics by instrumented indentation.</p>","PeriodicalId":22007,"journal":{"name":"Strength of Materials","volume":"82 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Updating of a Portable Installation for Determining the Strength Characteristics of Structural Elements by Instrumented Indentation\",\"authors\":\"O. A. Katok, R. V. Kravchuk, A. V. Sereda, V. V. Kharchenko, M. P. Rudnytskyi\",\"doi\":\"10.1007/s11223-023-00586-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The instrumented indentation method, based on the digital recording of the parameters of the entire process of continuous local deformation of the material by an indenter, provides more complete and accurate information about the material’s behavior under load. Obtaining such information without compromising the integrity of a critical structure during operation increases its value. Therefore, more and more attention has recently been paid to portable installations and devices that use the instrumented indentation method. To date, no such equipment is manufactured in Ukraine. Therefore, there is a need to develop portable equipment for conducting such tests in the field under various modes of static and cyclic loading in the macro range of forces. The paper describes an updated portable installation PIIT-02M for determining the strength characteristics of structural elements in service by instrumented indentation, which was developed following the requirements of ISO 14577 and is intended for testing at the macro level. The system of fastening the portable installation on the test object was updated from mechanical (hooks and chains) to electromagnetic. This made it possible to conduct tests on pipes and flat surfaces, including sheet materials and structures made of them, significantly increasing the test efficiency and expanding the range of applications. Comparative tests on a 12 mm thick structural carbon 20 steel plate using the previous mechanical fastening system and the new electromagnetic one showed that the indentation diagrams obtained overlap well. Based on the results of tests of high-strength steels, the portable installation PIIT-02M allows one under both laboratory and operating conditions to record the process of indentation of the indenter into specimens of structural materials with high accuracy and, accordingly, to determine their mechanical characteristics by instrumented indentation.</p>\",\"PeriodicalId\":22007,\"journal\":{\"name\":\"Strength of Materials\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strength of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11223-023-00586-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11223-023-00586-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Updating of a Portable Installation for Determining the Strength Characteristics of Structural Elements by Instrumented Indentation
The instrumented indentation method, based on the digital recording of the parameters of the entire process of continuous local deformation of the material by an indenter, provides more complete and accurate information about the material’s behavior under load. Obtaining such information without compromising the integrity of a critical structure during operation increases its value. Therefore, more and more attention has recently been paid to portable installations and devices that use the instrumented indentation method. To date, no such equipment is manufactured in Ukraine. Therefore, there is a need to develop portable equipment for conducting such tests in the field under various modes of static and cyclic loading in the macro range of forces. The paper describes an updated portable installation PIIT-02M for determining the strength characteristics of structural elements in service by instrumented indentation, which was developed following the requirements of ISO 14577 and is intended for testing at the macro level. The system of fastening the portable installation on the test object was updated from mechanical (hooks and chains) to electromagnetic. This made it possible to conduct tests on pipes and flat surfaces, including sheet materials and structures made of them, significantly increasing the test efficiency and expanding the range of applications. Comparative tests on a 12 mm thick structural carbon 20 steel plate using the previous mechanical fastening system and the new electromagnetic one showed that the indentation diagrams obtained overlap well. Based on the results of tests of high-strength steels, the portable installation PIIT-02M allows one under both laboratory and operating conditions to record the process of indentation of the indenter into specimens of structural materials with high accuracy and, accordingly, to determine their mechanical characteristics by instrumented indentation.
期刊介绍:
Strength of Materials focuses on the strength of materials and structural components subjected to different types of force and thermal loadings, the limiting strength criteria of structures, and the theory of strength of structures. Consideration is given to actual operating conditions, problems of crack resistance and theories of failure, the theory of oscillations of real mechanical systems, and calculations of the stress-strain state of structural components.